[1]古丽革乃·托合提 玛依拉·吐尔逊 吐尔逊·沙比尔.白细胞介素-33在阿尔茨海默病中的作用机制研究进展[J].卒中与神经疾病杂志,2021,28(02):235-237.[doi:10.3969/j.issn.1007-0478.2021.02.023]
点击复制

白细胞介素-33在阿尔茨海默病中的作用机制研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第28卷
期数:
2021年02期
页码:
235-237
栏目:
综 述
出版日期:
2021-04-20

文章信息/Info

文章编号:
1007-0478(2021)02-0235-04
作者:
古丽革乃·托合提 玛依拉·吐尔逊 吐尔逊·沙比尔
830011 乌鲁木齐,新疆医科大学第一附属医院神经内科[古丽革乃·托合提 玛依拉·吐尔逊 吐尔逊·沙比尔(通信作者)]
分类号:
R742
DOI:
10.3969/j.issn.1007-0478.2021.02.023
文献标志码:
A

参考文献/References:

[1] Lane CA, Hardy J, Schott JM. Alzheimer’s disease[J]. European Journal of Neurology, 2018, 25(1): 59-70.
[2] Italiani P, Puxeddu I, Napoletano S, et al. Circulating levels of IL-1 family cytokines and receptors in Alzheimer’s disease: new markers of disease progression?[J]. J Neuroinflammation, 2018, 15(1): 342.
[3] Wood H. Alzheimer disease: meta-analysis finds high reversion rate from MCI to normal cognition[J]. Nat Rev Neurol, 2016, 12(4):189.
[4] Sinyor B, Mineo J, Ochner C. Alzheimer’s disease, inflammation, and the role of antioxidants[J]. J Alzheimers Dis Rep, 2020, 4(1): 175-183.
[5] Wang MM, Miao D, Cao XP, et al. Innate immune activation in Alzheimer’s disease[J]. Ann Transl Med, 2018, 6(10): 177.
[6] Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease[J]. Clin Biochem, 2019, 72:87-89.
[7] Ahmadi M, Fathi F, Fouladi S, et al. Serum IL-33 level and IL-33, IL1RL1 gene polymorphisms in asthma and multiple sclerosis patients[J]. Curr Mol Med, 2019, 19(5): 357-363.
[8] Strangward P, Haley MJ, Albornoz MG, et al. Targeting the IL33-NLRP3 axis improves therapy for experimental cerebral malaria[J]. Proc Natl Acad Sci U S A, 2018, 115(28): 7404-7409.
[9] Abd Rachman Isnadi MF, Chin VK, Abd Majid R, et al.Critical Roles of IL-33/ST2 Pathway in Neurological Disorders. Mediators Inflamm, 2018, 2018:5346413.
[10] Martin NT, Martin MU. Interleukin 33 is a Guardian of barriers and a local alarmin[J]. Nat Immunol, 2016, 17(2): 122-131.
[11] Du LX, Wang YQ, Hua GQ, et al. IL-33/ST2 pathway as a rational therapeutic target for CNS diseases[J]. Neuroscience, Neuroscience, 2018, 369: 222-230.
[12] Conti P, Lauritano D, Caraffa A, et al.Microglia and mast cells generate proinflammatory cytokines in the brain and worsen inflammatory state:Suppressor effect of IL-37[Z],2020:173035.
[13] Saresella M, Marventano I, Piancone F, et al. IL-33 and its decoy sST2 in patients with Alzheimer’s disease and mild cognitive impairment[J]. J Neuroinflammation, 2020, 17(1): 174.
[14] Pusceddu I, Dieplinger B, Mueller T. ST2 and the ST2/IL-33 signalling pathway-biochemistry and pathophysiology in animal models and humans[J]. Clin Chim Acta, 2019, 495: 493-500.
[15] Homsak E, Gruson D. Soluble ST2: A complex and diverse role in several diseases[J]. Clin Chim Acta, 2020, 507: 75-87.
[16] Chapuis J, Hot D, Hansmannel F, et al. Transcriptomic and genetic studies identify IL-33 as a candidate gene for Alzheimer’s disease[J]. Mol Psychiatry, 2009, 14(11): 1004-1016.
[17] Tian M, Deng YY, Hou DR, et al. Association of IL-1, IL-18, and IL-33 gene polymorphisms with late-onset Alzheimer’s disease in a Hunan Han Chinese population[J]. Brain Res, 2015, 1596: 136-45.
[18] Zhong X, Liu MY, He M, et al. Association of interleukin-33 gene polymorphisms with susceptibility to late onset Alzheimer’s disease: a meta-analysis[J]. Neuropsychiatr Dis Treat, 2017, 13:2275-2284.
[19] Kudinova AY, Deak T, Hueston CM, et al. Cross-species evidence for the role of interleukin-33 in depression risk[J]. J Abnorm Psychol, 2016, 125(4): 482-494.
[20] Zhou Z, Yan F, Liu O. Interleukin(IL)-33: an orchestrator of immunity from host defence to tissue homeostasis[J]. Clin Transl Immunology, 2020, 9(6):e1146.
[21] Munjal A, Khandia R. Atherosclerosis: orchestrating cells and biomolecules involved in its activation and inhibition[J]. Adv Protein Chem Struct Biol, 2020, 120: 85-122.
[22] Tao J, Wang Y, Li L, et al.Critical roles of ELVOL4 and IL-33 in the progression of Obesity-Related cardiomyopathy via integrated bioinformatics analysis[Z],2020:542.
[23] Webers A, Heneka MT, Gleeson PA. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease[J]. Immunol Cell Biol, 2020, 98(1): 28-41.
[24] Lau SF, Chen C, Fu WY, et al. IL-33-PU[J]. 1 Transcriptome Reprogramming Drives Functional State Transition and Clearance Activity of Microglia in Alzheimer’s Disease.Cell Rep, 2020, 31(3): 107530.
[25] Fu AK, Hung KW, Yuen MY, et al. IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline[J]. Proc Natl Acad Sci U S A, 2016, 113(19): E2705-E2713.
[26] Yao K, Zu HB. Microglial polarization: novel therapeutic mechanism against Alzheimer’s disease[J]. Inflammopharmacology, 2020, 28(1): 95-110.
[27] Sebastian ML, Müller SA, Colombo AV, et al.Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models[Z],2020:e54083.
[28] Dhib-Jalbut S. Friend or foe? Targeting microglia in Alzheimer’s disease[J]. Cytokine, 2016, 86:4-5.
[29] Zhu D, Yang N, Liu YY, et al. M2 macrophage transplantation ameliorates cognitive dysfunction in amyloid-beta-treated rats through regulation of microglial polarization[J]. J Alzheimer’s Dis, 2016, 52(2):483-495.
[30] Das R, Chinnathambi S. Microglial priming of antigen presentation and adaptive stimulation in Alzheimer’s disease[J]. Cell Mol Life Sci, 2019, 76(19): 3681-3694.
[31] Zhang H, Wang XJ, Xu P, et al. Tolfenamic acid inhibits GSK-3β and PP2A mediated tau hyperphosphorylation in Alzheimer’s disease models[J]. J Physiol Sci, 2020, 70(1): 29.
[32] Nishizaki T. IL-33 suppresses GSK-3β activation through an ST2-independent MyD88/TRAF6/RIP/PI3K/Akt pathway[J]. Heliyon, 2018, 4(11): e00971.
[33] Kanno T, Tsuchiya A, Tanaka A, et al. Combination of PKCε activation and PTP1B inhibition effectively suppresses Aβ-Induced GSK-3β activation and Tau phosphorylation[J]. Mol Neurobiol, 2016, 53(7): 4787-4797.
[34] Vainchtein ID, Chin G, Cho FS, et al. Astrocyte-derived interleukin-33 promotes microglial synapse engulfment and neural circuit development[J]. Science, 2018, 359(6381): 1269-1273.
[35] Fairlie-Clarke K BM, Function of IL-33/ST2 Axis in the Central Nervous System Under Normal, Diseased C.Front immunol[Z],2018:2596.
[36] Dohi E, Choi EY, Rose IV, et al. Behavioral changes in mice lacking interleukin-33[J]. eNeuro, 2017, 4(6): ENEURO.0147-ENEU17.2017.
[37] Carlock C, Wu J, Shim J, et al. Interleukin33 deficiency causes tau abnormality and neurodegeneration with Alzheimer-like symptoms in aged mice[J]. Transl Psychiatry, 2017, 7(8): e1191.
[38] La Rosa F, Saresella M, Baglio F, et al. Immune and imaging correlates of mild cognitive impairment conversion to Alzheimer’s disease[J]. Sci Rep, 2017, 7(1):16760.
[39] Liang CS, Su KP, Tsai CL, et al. The role of interleukin-33 in patients with mild cognitive impairment and Alzheimer’s disease[J]. Alzheimers Res Ther, 2020, 12(1): 86.

备注/Memo

备注/Memo:
基金项目:新疆维吾尔自治区自然科学基金(编号为2019D01C288)
更新日期/Last Update: 2021-04-20