参考文献/References:
1 Seth P, Koul N. Astrocyte, the star avatar: redefined. J Biosci, 2008, 33(3): 405-421.
2 Newman LA, Korol DL, Gold PE. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS One, 2011, 6(12): e28427.
3 Benarroch EE. Neuron-astrocyte interactions: partnership for normal function and disease in the central nervous system. Mayo Clin Proc, 2005, 80(10): 1326-1338.
4 Dong JH, Chen X, Cui M, et al. Beta2-Adrenergic Receptor and Astrocyte Glucose Metabolism. J Mol Neurosci, 2012, 48(2): 456-463.
5 Boumezbeur F, Petersen KF, Cline GW, et al. The contribution of blood lactateto brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci, 2010, 30(42): 13983-13991.
6 Herrero-Mendez A, Almeida A, Fern ndez E, et al. The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol, 2009, 11(6): 747-752.
7 Bola os JP, Almeida A. The pentose-phosphate pathway in neuronal survival against nitrosative stress. IUBMB Life, 2010, 62(1): 14-18.
8 Celsi F, Pizzo P, Brini M, et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta, 2009, 1787(5): 335-344.
9 Pellerin L. Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab, 2010, 36(Suppl 3): S59-63.
10 Rodriguez-Rodriguez P, Fernandez E, Almeida A, et al. Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ, 2012, 19(10): 1582-1589.
11 Wyss MT, Jolivet R, Buck A, et al. In vivo evidence for lactate as a neuronal energy source. J Neurosci, 2011, 31(20): 7477-7485.
12 Barros LF, Courjaret R, Jakoby P, et al. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: a multiphoton study of cerebellar slices. Glia, 2009, 57(9): 962-970.
13 Sickmann HM, Walls AB, Schousboe A, et al. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem, 2009, 109(Suppl 1): 80-86.
14 Walls AB, Heimburger CM, Bouman SD, et al. Robust glycogen shunt activity in astrocytes: effects of glutamatergic and adrenergic agents. Neuroscience, 2009, 158(1): 284-292.
15 Vaishnavi SN, Vlassenko AG, Rundle MM, et al. Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A, 2010, 107(41): 17757-17762.
16 Pellerin L, Pellegri G, Bittar PG, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev Neurosci, 1998, 20(4-5): 291-299.
17 Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res, 2005, 79(1-2): 11-18.
18 Kreft M, Bak LK, Waagepetersen HS, et al. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro, 2012, 4(3): 187-199.
19 Jordan TN, Richard AH, Robert CC. Reevaluating Metabolism in Alzheimer's Disease from the Perspective of the Astrocyte-Neuron Lactate Shuttle Model. J Neurodegener Dis, 2013,2013(2013):1-13.
20 Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab, 2014, 34(11): 1736-1748.
21 Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med, 2008, 36(10): 2871-2877.
22 DiNuzzo M, Mangia S, Maraviglia B, et al. Changes in glucose uptake rather than lactate shuttle take center stage in subserving neuroenergetics: evidence from mathematical modeling. J Cereb Blood Flow Metab, 2010, 30(3): 586-602.
23 Mangia S, Simpson IA, Vannucci SJ, et al. The in vivo neuron-to-astrocyte lactate huttle in human brain: evidence from modeling of measured lactate levels during visual stimulation. J Neurochem, 2009, 109(Suppl 1): 55-62.
24 Brown AM. Brain glycogen re-awakened. J Neurochem, 2004, 89(3): 537-552.
25 Sickmann HM, Walls AB, Schousboe A, et al. Functional significance of brain glycogen in sustaining glutamatergic neurotransmission. J Neurochem, 2009, 109(Suppl 1): 80-86.
26 Sickmann HM, Waagepetersen HS. Effects of diabetes on brain metabolism - is brain glycogen a significant player? Metab Brain Dis, 2015, 30(1): 335-343.
27 Sickmann HM, Waagepetersen HS, Schousboe A, et al. Brain glycogen and its role in supporting glutamate and GABA homeostasis in a type 2 diabetes rat model. Neurochem Int, 2012, 60(3): 267-275.
28 Tarczyluk MA, Nagel DA, O'Neil JD, et al. Functional astrocyte-neuron lactate shuttle in a human stemcell-derived neuronal network. J Cereb Blood Flow Metab, 2013, 33(9): 1386-1393.
29 Dinuzzo M, Mangia S, Maraviglia B, et al. The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res, 2012, 37(11): 2432-2438.
30 Dienel GA, Cruz NF. Contributions of glycogen to astrocytic energetics during brain activation. Metab Brain Dis, 2015, 30(1): 281-298.
31 Suh SWA, Bergher JP, Anderson CM, et al. strocyte glycogen sustains neuronal activity during hypoglycemia: studies with the glycogen phosphorylase inhibitor CP-316,819([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino)-3-oxo -1-(phenylmethyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther, 2007, 321(1):45-50.
32 Duran J, Saez I, Gruart A, et al. Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab, 2013, 33(4): 550-556.