参考文献/References:
[1] Zanger U M, Schwab M. Cytochrome P450 enzymes in drug metabolism:Regulation of gene expression, enzyme activities, and impact of genetic variation[J]. Pharmacology & Therapeutics, 2013, 138(1):103-141.
[2] De Kesel P M, Lambert W E, Stove C P. Alternative sampling strategies for cytochrome P450 phenotyping[J]. Clinical Pharmacokinetics, 2016, 55(2):169-184.
[3] Caudle K E, Dunnenberger H M, Freimuth R R, et al. Standardizing terms for clinical pharmacogenetic test results:consensus terms from the Clinical Pharmacogenetics Implementation Consortium(CPIC)[J]. Genetics in Medicine, 2017, 19(2):215-223.
[4] Wrighton S A, Stevens J C, Becker G W, et al. Isolation and characterization of human liver cytochrome P450 2C19:correlation between 2C19 and S-mephenytoin 4'-hydroxylation[J]. Archives of Biochemistry and Biophysics, 1993, 306(1):240-245.
[5] Li-Wan-Po A, Girard T, Farndon P, et al. Pharmacogenetics of CYP2C19:functional and clinical implications of a new variant CYP2C19*17[J]. British Journal of Clinical Pharmacology, 2010, 69(3):222-230.
[6] Samer C F, Lorenzini K I, Rollason V, et al. Applications of CYP450 testing in the clinical setting[J]. Molecular Diagnosis & Therapy, 2013, 17(3):165-184.
[7] Sim S C. Ingelman-sundberg M. Update on allele nomenclature for human cytochromes P450 and the human cytochrome P450 allele(CYP-allele)nomenclature database[J]. Methods Mol Biol,2013,987:251-259.
[8] Sibbing D, Gebhard D, Koch W, et al. Isolated and interactive impact of common CYP2C19 genetic variants on the antiplatelet effect of chronic clopidogrel therapy[J]. Journal of Thrombosis and Haemostasis:JTH, 2010, 8(8):1685-1693.
[9] Probst-Schendzielorz K, Viviani R, Stingl J C. Effect of cytochrome P450 polymorphism on the action and metabolism of selective serotonin reuptake inhibitors[J]. Expert Opinion on Drug Metabolism & Toxicology, 2015, 11(8):1219-1232.
[10] Cavallari L H. Personalizing antiplatelet prescribing using genetics forpatients undergoing percutaneous coronary intervention[J]. Expert Review of Cardiovascular Therapy, 2017, 15(8):581-589.
[11] Daly A K. Pharmacogenetics of drug metabolizing enzymes in the United Kingdom population:review of current knowledge and comparison with selected European populations[J]. Drug Metab Pers Ther, 2015, 30(3):165-174.
[12] Tang Ning, Yin Shiyu, Sun Ziyong, et al. The relationship between on-clopidogrel platelet reactivity, genotype, and post-percutaneous coronary intervention outcomes in Chinese patients[J]. Scandinavian Journal of Clinical and Laboratory Investigation, 2015, 75(3):223-229.
[13] Scott S A, Sangkuhl K, Stein C M, et al. Clinical pharmacogenetics implementation consortium.clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy:2013 update[J]. Clinical Pharmacology & Therapeutics, 2013, 94(3):317-323.
[14] Scott S A, Sangkuhl K, Shuldiner A R, et al. PharmGKB summary:very important pharmacogene information for cytochrome P450, family 2, subfamily C, polypeptide 19[J]. Pharmacogenetics and Genomics, 2012, 22(2):159-165.
[15] Wu Zhen-qiang, Zhang Xiao-qing, Shen Lu, et al. A systematically combined genotype and functional combination analysis of CYP2E1, CYP2D6, CYP2C9, CYP2C19 in different geographic areas of mainland China - A basis for personalized therapy[J]. PLOS One, 2013, 8(10):e71934.
[16] Ellis K J, Stouffer G A, Mcleod H L, et al. Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition:US FDA recommendations[J]. Pharmacogenomics, 2009, 10(11):1799-1817.
[17] Giusti B, Gori A M, Marcucci R, et al. Relation of CYP2C19 loss-of-function polymorphism to the occurrence of stent thrombosis[J]. Expert Opinion on Drug Metabolism & Toxicology, 2010, 6(4):393-407.
[18] Kazui M, Nishiya Yumi, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite[J]. Drug Metabolism and Disposition:the Biological Fate of Chemicals, 2010, 38(1):92-99.
[19] Momary K M, Dorsch M P. Factors associated with clopidogrel onresponsiveness[J]. Future Cardiology, 2010, 6(2):195-210.
[20] Mega J L, Close S L, Wiviott S D. Cytochrome P-450 polymorphisms and response to clopidogrel[J]. The New England Jounary of Medicine, 2009,360(4):354-362.
[21] Harmsze A M, Van Werkum J W, Ten Berg J M, et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis:a case-control study[J]. European Heart Journal, 2010, 31(24):3046-3053.
[22] Wei Y-q, Wang D-g, Yang H, et al. Cytochrome P450 CYP 2C19*2 associated with adverse 1-Year cardiovascular events in patients with acute coronary syndrome[J]. PLOS One, 2015, 10(7):e0132561.
[23] Trenk D, Hochholzer W. Genetics of platelet inhibitor treatment[J]. British Journal of Clinical Pharmacology, 2014, 77(4):642-653.
[24] Aleil B, Jacquemin L, De Poli F, et al. Clopidogrel 150 mg/day to Overcome Low Responsiveness in Patients Undergoing Elective Percutaneous Coronary Intervention Results From the VASP-02(Vasodilator-Stimulated Phosphoprotein-02)Randomized Study[J]. JACC-Cardiovascular Interventions, 2008, 1(6):631-638.
[25] Cavallari L H. Personalizing antiplatelet prescribing using genetics for patients undergoing percutaneous coronary intervention[J]. Expert Review of Cardiovascular Therapy, 2017, 15(8):581-589.
[26] Guo Y-m, Zhao Z-c, Zhang L, et al. CYP2C19 polymorphisms in acute coronary syndrome patients undergoing clopidogrel therapy in Zhengzhou population[J]. Genetics and Molecular Research:GMR, 2016, 15(2):doi:10.4238.
[27] Shen De-liang, Wang Bo, Bai Jing, et al. Clinical value of CYP2C19 genetic testing for guiding the antiplatelet therapy in a Chinese population[J]. Journal of Cardiovascular Pharmacology, 2016, 67(3):232-236.
[28] Erathi H V, Durgaprasad R, Velam V, et al. Evaluation of On-Clopidogrel platelet reactivity overtime, SYNTAX SCORE, genetic polymorphisms and their relationship to one year clinical outcomes in STEMI patients undergoing PCI[J]. Minerva Cardioangiologica, 2018, 66(1):16-25.
[29] Yao Jia-chen, Cui Min, Pan Mang-mang, et al. Efficacy and safety of CYP2C19 genotype in stroke or transient ischemic attack patients treated with clopidogrel monotherapy or clopidogrel plus aspirin Protocol for a systemic review and meta-analysis[J]. Medicine, 2018, 97(24):e11060.
[30] Wiviott S D, Braunwald E, Triton-Timi 3 I, et al. Prasugrel versus clopidogrel in patients with acute coronary syndromes[J]. New England Journal of Medicine, 2007, 357(20):2001-2015.
[31] Sorich M J, Vitry A, Ward M B, et al. Prasugrel vs. clopidogrel for cytochrome P450 2C19-genotyped subgroups:integration of the TRITON-TIMI 38 trial data[J]. Journal of Thrombosis and Haemostasis, 2010, 8(8):1678-1684.
[32] Tan S, Fong A, Mejin M, et al. Association of CYP2C19*2 polymorphism with clopidogrel response and 1-year major adverse cardiovascular events in a multiethnic population with drug-eluting stents[J]. Pharmacogenomics, 2017, 18(13):1225-1239.
[33] Fan Wei-hong, Plent S, Prats J, et al. Trends in P2Y(12)inhibitor use in patients referred for invasive evaluation of coronary artery disease in contemporary US practice[J]. American Journal of Cardiology, 2016, 117(9):1439-1443.
[34] Moon J Y, Franchi F, Rollini F, et al. Role of genetic testing in patients undergoing percutaneous coronary intervention[J]. Expert Review of Clinical Pharmacology, 2018, 11(2):151-164.
[35] Katz P O, Gerson L B, Vela M F. Guidelines for the diagnosis and management of gastroesophageal reflux disease[J]. American Journal of Gastroenterology, 2013, 108(3):308-328.
[36] Andersson T, Holmberg J, Röhss K, et al. Pharmacokinetics and effect on caffeine metabolism of the proton pump inhibitors,omeprazole,lansoprazole,and pantoprazole[J]. British Journal of Clinical Pharmacology, 1998, 45(4):369-375.
[37] Shin J M, Sachs G. Pharmacology of proton pump inhibitors[J]. Curr Gastroenterol Rep,2008, 10(6):528-534.
[38] Bahar M, Setiawan D, Hak E, et al. Pharmacogenetics of drug-druginteraction and drug-drug-gene interaction:a systematic review on CYP2C9,CYP2C19 and CYP2D6[J]. Pharmacogenomics, 2017, 18(7):701-739.
[39] Horn J. Review article:relationship between the metabolism and efficacy of proton pump inhibitors - focus on rabeprazole[J]. Alimentary Pharmacology & Therapeutics, 2004, 20(6):11-19.
[40] Hagymási K, Müllner K, Herszényi L, et al. Update on the pharmacogenomics of proton pump inhibitors[J]. Pharmacogenomics, 2011, 12(6):873-888.
[41] Shi Shao-jun, Klotz U. Proton pump inhibitors:an update of their clinical use and pharmacokinetics[J]. European Journal of Clinical Pharmacology, 2008, 64(10):935-951.
[42] Musumba C O, Jorgensen A, Sutton L, et al. CYP2C19*17 gain-of-function polymorphism is associated with peptic ulcer disease[J]. Clinical Pharmacoloy Theropeutics,2013,93(2):195-203.
[43] Molina-Infante J, Rodriguez-Sanchez J, Martinek J, et al. Long-Term loss of response in proton pump Inhibitor-Responsive esophageal eosinophilia is uncommon and influenced by CYP2C19 genotype and rhinoconjunctivitis[J]. American Journal of Gastroenterology, 2015, 110(11):1567-1575.
[44] Liou J M, Chen C C, Chen M J, et al. Sequential versus triple therapy for the first-line treatment of Helicobacter pylori:a multicentre, open-label, randomised trial[J]. Lancet, 2013, 381(9862):205-213.
[45] Yoshimasa, Saito, Hiroshi, et al. First-line eradication for Helicobacter pylori-positive gastritis by esomeprazole-based triple therapy is influenced by CYP2C19 genotype[J]. World Journal of Gastroenterology, 2015, 21(48):13548-13554.
[46] Ormeci A, Emrence Z, Baran B, et al. Can helicobacter pylori be eradicated with high-dose proton pump inhibitor in extensive metabolizers with the CYP2C19 genotypic polymorphism?[J]. European Review for Medical and Pharmacological Sciences, 2016, 20(9):1795-1797.
[47] Yu Li-yuan, Sun Lu-ning, Zhang X H, et al. A review of the novel application and potential adverse effects of proton pump inhibitors[J]. Advances in Therapy, 2017, 34(5):1070-1086.
[48] El Rouby N, Lima J J, Johnson J A. Proton pump inhibitors:from CYP2C19pharmacogenetics to precision medicine[J]. Expert Opinion on Drug Metabolism & Toxicology, 2018, 14(4):447-460.
[49] Porter R, Meldrum B S, Porter R J,et al. Antiseizure Drugs, In:BG Katzung, eds. Basic and Clinical Pharmacology. 8th ed. NY. Lange Medical Books, 2001:395-417.
[50] Browne TR, Holmes GL. Epilepsy. N Engl J Med, 2001,344(15):1145-1155.
[51] Saruwatari J, Ishitsu T, Nakagawa K. Update on the genetic polymorphisms of Drug-Metabolizing enzymes in antiepileptic drug therapy[J]. Pharmaceuticals(Basel, Switzerland), 2010, 3(8):2709-2732.
[52] Dagenais R, Wilby K J, Elewa H, et al. Impact of genetic polymorphisms on phenytoin pharmacokinetics and clinical outcomes in the Middle East and North Africa region[J]. Drugs in R&D, 2017, 17(3):341-361.
[53] Liao Kai, Liu Yong, Ai Chun-zhi, et al. The association between CYP2C9/2C19 polymorphisms and phenytoin maintenance doses in Asian epileptic patients:A systematic review and meta-analysis[J]. International Journal of Clinical Pharmacology and Therapeutics, 2018, 56(7):337-346.
[54] Smith R L, Haslemo T, Refsum H, et al. Impact of age, gender and CYP2C9/2C19 genotypes on dose-adjusted steady-state serum concentrations of valproic acid-a large-scale study based on naturalistic therapeutic drug monitoring data[J]. European Journal of Clinical Pharmacology, 2016, 72(9):1099-1104.
[55] Jogamoto T, Yamamoto Y, Fukuda M A, et al. Add-on stiripentol elevates serum valproate levels in patients with or without concomitant topiramate therapy[J]. Epilepsy Research, 2017, 130:7-12.
[56] Noai M, Soraoka H, Kajiwara A, et al. Cytochrome P450 2C19 polymorphisms and valproic acid-induced weight gain[J]. Acta Neurologica Scandinavica, 2016, 133(3):216-223.
[57] Jose M, Mathaiyan J, Kattimani S, et al. Role of CYP2C19 gene polymorphism in acute alcohol withdrawal treatment with loading dose of diazepam in a South Indian population[J]. European Journal of Clinical Pharmacology, 2016, 72(7):807-812.
[58] Hicks J K, Swen J J, Thorn C F, et al. Clinical pharmacogenetics implementation consortium.clinical pharmacogenetics implementation consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants[J]. Clinical Pharmacology & Therapeutics, 2013, 93(5):402-408.
[59] Ryu S, Park S, Lee J H, et al. A study on CYP2C19 and CYP2D6 polymorphic effects on pharmacokinetics and pharmacodynamics of amitriptyline in healthy koreans[J]. CTS-Clinical and Translational Science, 2017, 10(2):93-101.
[60] Taranu A, Colle R, Gressier F, et al. Should a routine genotyping of CYP2D6 and CYP2C19 genetic polymorphisms be recommended to predict venlafaxine efficacy in depressed patients treated in psychiatric settings?[J]. Pharmacogenomics, 2017, 18(7):639-650.
[61] Lloret-Linares C, Daali Y, Chevret S, et al. Exploring venlafaxine pharmacokinetic variability with a phenotyping approach, a multicentric french-swiss study(MARVEL study)[J]. BMC Pharmacology & Toxicology, 2017, 18(1):70.
[62] Jukic'M M, Opel N, Ström J, et al. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment[J]. Molecular Psychiatry, 2016, 22(8):1155-1163.
[63] Chen B, Xu Y, Jiang T, et al. Estimation of CYP2D6*10 genotypes on citalopram disposition in Chinese subjects by population pharmacokinetic assay[J]. Journal of Clinical Pharmacy and Therapeutics, 2013, 38(6):504-511.
[64] Chang Ming, Tybring G, Dahl M L, et al. Impact of cytochrome P450 2C19 polymorphisms on citalopram/escitalopram exposure:a systematic review and meta-analysis[J]. Clinical Pharmacokinetics, 2014, 53(9):801-811.
[65] Uckun Z, Baskak B, Ozel-Kizil E T, et al. The impact of CYP2C19 polymorphisms on citalopram metabolism in patients with major depressive disorder[J]. Journal of Clinical Pharmacy and Therapeutics, 2015, 40(6):672-679.
[66] Yuce-Artun N, Baskak B, Ozel-Kizil E T, et al. Influence of CYP2B6 and CYP2C19 polymorphisms on sertraline metabolism in major depression patients[J]. International Journal of Clinical Pharmacy, 2016, 38(2):388-394.
[67] Pearson M M, Rogers D, Cleary J D, et al. Voriconazole:a new triazole antifungal agent[J]. Annals of Pharmacotherapy, 2003, 37(3):420-432.
[68] Owusu Obeng A, Egelund E F, Alsultan A, et al. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole:are we ready for clinical implementation of pharmacogenomics?[J]. Pharmacotherapy, 2014, 34(7):703-718.
[69] Imamura C K, Furihata K, Okamoto S, et al. Impact of cytochrome P450 2C19 polymorphisms on the pharmacokinetics of tacrolimus when coadministered with voriconazole[J]. Journal of Clinical Pharmacology, 2016, 56(4):408-413.
[70] Hamadeh I S, Klinker K P, Borgert S J, et al. Impact of the CYP2C19 genotype on voriconazole exposure in adults with invasive fungal infections[J]. Pharmacogenetics and Genomics, 2017, 27(5):190-196.
[71] Hassan A, Burhenne J, Riedel K D, et al. Modulators of very low voriconazole concentrations in routine therapeutic drug monitoring[J]. Therapeutic Drug Monitoring, 2011, 33(1):86-93.
[72] You Hai-sheng, Dong Yu-zhu, Zou Ya-min, et al. Voriconazole therapeutic drug monitoring:Factors associated with supratherapeutic and subtherapeutic voriconazole concentrations[J]. International Journal of Clinical Pharmacology and Therapeutics, 2018, 56(5):239-246.
[73] Yamamoto N, Murakami H, Hayashi H, et al. CYP2C19 genotype-based phase I studies of a c-Met inhibitor tivantinib in combination with erlotinib, in advanced/metastatic non-small cell lung cancer[J]. British Journal of Cancer, 2013, 109(11):2803-2809.
[74] Kattel K, Evande R, Tan C, et al. Impact of CYP2C19 polymorphism on the pharmacokinetics of nelfinavir in patients with pancreatic cancer[J]. British Journal of Clinical Pharmacology, 2015, 80(2):267-275.
[75] Yan F, Xu J-f, Liu X-f, et al. Interaction between smoking and CYP2C19*3 polymorphism increased risk of lung cancer in a Chinese population[J]. Tumour Biology:the Journal of the International Society for Oncodevelopmental Biology and Medicine, 2014, 35(6):5295-5298.
[76] Jamieson D, Lee J, Cresti N, et al. Pharmacogenetics of adjuvant breast cancer treatment with cyclophosphamide, epirubicin and 5-fluorouracil[J]. Cancer Chemotherapy and Pharmacology, 2014, 74(4):667-674.
[77] Thota K, Prasad K, Basaveswara Rao M V. Detection of cytochrome P450polymorphisms in breast cancer patients May impact on tamoxifen therapy[J]. Asian Pacific Journal of Cancer Prevention:APJCP, 2018, 19(2):343-350.
[78] Chen Jia, Zheng Xin, Liu Dong-yang, et al. Therapeutic effects and adverse drug reactions are affected by icotinib exposure and CYP2C19 and EGFR genotypes in Chinese Non-Small cell lung cancer patients[J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(17):7195-7200.
[79] Bai Lan, He Juan, He Gong-hao, et al. Association of CYP2C19 polymorphisms with survival of breast cancer patients using tamoxifen:results of a meta-analysis[J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(19):8331-8335.
[80] Jainan W, Vilaichone R K. Effects of the CYP2C19 genetic polymorphism ongastritis,peptic ulcer disease,peptic ulcer bleeding and gastric cancer[J]. Asian Pacific Journal of Cancer Prevention:APJCP, 2014, 15(24):10957-10960.
[81] Bhat G A, Bhat A B, Lone M M. Association of genetic variants of CYP2C19 and CYP2D6 with esophageal squamous cell carcinoma risk in northern India, Kashmir[J]. Nutrition and Cancer-An International Journal, 2017, 69(4):585-592.
[82] Nun-Anan P, Chonprasertsuk S, Siramolpiwat S, et al. CYP2C19 genotype could be a predictive factor for aggressive manifestations of hepatocellular carcinoma related with chronic hepatitis B infection in Thailand[J]. Asian Pacific Journal of Cancer Prevention:APJCP, 2015, 16(8):3253-3256.
[83] Palovaara S, Tybring G, Laine K. The effect of ethinyloestradiol andlevonorgestrel on the CYP2C19-mediated metabolism of omeprazole in healthy female subjects[J]. British Journal of Clinical Pharmacology, 2003, 56(2):232-237.
[84] Pedersen R S, Noehr-Jensen L, Brosen K. Inhibitory effect of oral contraceptives on CYP2C19 activity is not significant in carriers of the CYP2C19{*}17 allele[J]. Clinical and Experimental Pharmacology and Physiology, 2013, 40(10):683-688.
[85] Furuta T, Iwaki T, Umemura K. Influences of different proton pump inhibitorson the anti-platelet function of clopidogrel in relation to CYP2C19 genotypes[J]. British Journal of Clinical Pharmacology, 2010, 70(3):383-392.
[86] Depta J P, Lenzini P A, Lanfear D E, et al. Clinical outcomes associated with proton pump inhibitor use among clopidogrel-treated patients within CYP2C19 genotype groups following acute myocardial infarction[J]. The Pharmacogenomics Journal, 2015, 15(1):20-25.
[87] El-Halabi M M, Zgheib N, Mansour N M, et al. CYP2C19 genetic polymorphism,rabeprazole and esomeprazole have no effect on the antiplatelet action of clopidogre[J]. Journal of Cardiovascular Pharmacology, 2013, 62(1):41-49.
[88] Hokimoto S, Akasaka T, Tabata N, et al. Impact of esomeprazole on platelet reactivity and clinical outcome according to CYP2C19 genotype in coronary heart disease patients during dual antiplatelet therapy[J]. Thrombosis Research, 2015, 135(6):1081-1086.
[89] Cialdella P, Gustapane M, Camaioni C, et al. What's new aboutClopidogrel[J]. Minerva Cardioangiologica, 2013, 61(6):683-689.
[90] Lopez J L, Tayek J A. Voriconazole-Induced hepatitis via simvastatin- and Lansoprazole-Mediated drug interactions:a case report and review of the literature[J]. Drug Metabolism and Disposition, 2016, 44(1):124-126.
[91] Tsubokura M, Miura Y, Itokawa T, et al. Fatal dysrhythmia following initiation of lansoprazole during a Long-Term course of voriconazole[J]. Journal of Clinical Pharmacology, 2011, 51(10):1488-1490.
[92] Iwamoto T, Monma F, Fujieda A, et al. Hepatic drug interaction between tacrolimus and lansoprazole in a bone marrow transplant patient receiving voriconazole and harboring CYP2C19 and CYP3A5 heterozygous mutations[J]. Clinical Therapeutics, 2011, 33(8):1077-1080.
[93] Yasui-Furukori N, Takahata T, Nakagami T, et al. Different inhibitory effect of fluvoxamine on omeprazole metabolism between CYP2C19 genotypes[J]. British Journal of Clinical Pharmacology, 2004, 57(4):487-494.
[94] Isoherranen N, Lutz J D, Chung S P, et al. Importance of Multi-P450 inhibition in Drug-Drug interactions:evaluation of incidence, inhibition magnitude, and prediction from in vitro data[J]. Chemical Research in Toxicology, 2012, 25(11):2285-2300.
[95] Yasui-Furukori N, Saito M, Uno T, et al. Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes[J]. Journal of Clinical Pharmacology, 2004, 44(11):1223-1229.
[96] Farid N A, Payne C D, Small D S, et al. Cytochrome P450 3A inhibition by ketoconazole affects prasugrel and clopidogrel pharmacokinetics and pharmacodynamics differently[J]. Clinical Pharmacology & Therapeutics, 2007, 81(5):735-741.
[97] Zahno A, Brecht K, Bodmer M, et al. Effects of drug interactions on biotransformation and antiplatelet effect of clopidogrel in vitro[J]. British Journal of Pharmacology, 2010, 161(2):393-404.
[98] Hirsh-Rokach B, Spectre G, Shai E-la, et al. Differential impact of selective serotonin reuptake inhibitors on platelet response to clopidogrel:a randomized, Double-Blind, crossover trial[J]. Pharmacotherapy, 2015, 35(2):140-147.
[99] Michaud V, Kreutz Y, Skaar T, et al. Efavirenz-mediated induction of omeprazole metabolism is CYP2C19 genotype dependent[J]. Pharmacogenomics Journal, 2014, 14(2):151-159.
[100] Tu J-h, Hu D-l, Dai L-l, et al. Effect of glycyrrhizin on CYP2C19 and CYP3A4 activity in healthy volunteers with different CYP2C19 genotypes[J]. Xenobiotica, 2010, 40(6):393-399.
[101] Uno T, Sugimoto K, Sugawara K A. The role of cytochrome P2C19 in R-warfarin pharmacokinetics and its interaction with omeprazole[J]. Therapeutic Drug Monitoring, 2008, 30(3):276-281.
[102] Yu K S, Yim D S,Cho J Y, et al. Effect of omeprazole on the pharmacokinetics of moclobemide according to the genetic polymorphism of CYP2C19[J]. Clinical Pharmacology & Therapeutics, 2001, 69(4):266-273.
[103] Carlsson B, Olsson G, Reis M, et al. Enantioselective analysis of citalopram and metabolites in adolescents[J]. Therapeutic Drug Monitoring, 2001, 23(6):658-664.