参考文献/References:
[1] Kumar R, Sanawar R, Li X, et al. Structure, biochemistry, and biology of PAK kinases[J]. Gene, 2017, 605(5): 20-31.
[2] Szczepanowska J. Involvement of Rac/Cdc42/PAK pathway in cytoskeletal rearrangements[J]. Acta Biochim Pol, 2009, 56(2): 225-234.
[3] Zhang J, Wang J, Zhou YF, et al. Rich1 negatively regulates the epithelial cell cycle, proliferation and adhesion by CDC42/RAC1-PAK1-Erk1/2 pathway[J]. Cell Signal, 2015, 27(9): 1703-1712.
[4] Nikoli(’overc)M. The Pak1 kinase: an important regulator of neuronal morphology and function in the developing forebrain[J]. Mol Neurobiol, 2008, 37(2/3): 187-202.
[5] Meng G, Tian C, Wang H, et al. Remarkable reductions of PAKs in the brain tissues of scrapie-infected rodent possibly linked closely with neuron loss[J]. Med Microbiol Immunol, 2014, 203(5): 291-302.
[6] Jeannot P, Nowosad A, Perchey RT, et al. p27(kip1)promotes invadopodia turnover and invasion through the regulation of the PAK1/cortactin pathway[J]. Elife, 2017, 6(3): e22207.
[7] Dammann K, Khare V, Lang MC, et al. PAK1 modulates a PPARγ/NF-κB cascade in intestinal inflammation[J]. Biochim Biophys Acta, 2015, 1853(10 Pt A): 2349-2360.
[8] Civiero L, Greggio E. PAKs in the brain: Function and dysfunction[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(2): 444-453.
[9] Wang Y, Wang SY, Lei M, et al. The p21-activated kinase 1(Pak1)signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration[J]. Br J Pharmacol, 2018, 175(8): 1362-1374.
[10] Pan X, Chang XX, Leung C, et al. PAK1 regulates cortical development via promoting neuronal migration and progenitor cell proliferation[J]. Mol Brain, 2015, 8(1): 36.
[11] Semenova G, Chernoff J. Targeting PAK1[J]. Biochem Soc Trans, 2017, 45(1): 79-88.
[12] Harms FL, Kloth K, Bley A, et al. Activating mutations in PAK1, encoding p21-Activated kinase 1, cause a neurodevelopmental disorder[J]. Am J Hum Genet, 2018, 103(4): 579-591.
[13] Bokoch GM. Biology of the p21-activated kinases[J]. Annu Rev Biochem, 2003, 72(1): 743-781.
[14] Kichina JV, Goc A, Al-Husein B, et al. PAK1 as a therapeutic target[J]. Expert Opin Ther Targets, 2010, 14(7): 703-725.
[15] Zhou Y, Su J, Shi L, et al. DADS downregulates the Rac1-ROCK1/PAK1-LIMK1-ADF/cofilin signaling pathway, inhibiting cell migration and invasion[J]. Oncol Rep, 2013, 29(2): 605-612.
[16] Koth AP, Oliveira BR, Parfitt GM, et al. Participation of group I p21-activated kinases in neuroplasticity[J]. J Physiol Paris, 2014, 108(4/6): 270-277.
[17] Ma QL, Yang F, Frautschy S, et al. PAK in alzheimer disease, huntington disease and x-linked mental retardation[J]. Cell Logist, 2012, 2(2): 117-125.
[18] Semenova G, Stepanova DS, Dubyk C, et al. Targeting group I p21-activated kinases to control malignant peripheral nerve sheath tumor growth and metastasis[J]. Oncogene, 2017, 36(38): 5421-5431.
[19] Heng IT, Chariot A, Nguyen L. Molecular layers underlying cytoskeletal remodelling during cortical development[J]. Trends Neurosci, 2010, 33(1): 38-47.
[20] Fletcher DA, Mullins D. Cell mechanics and the cytoskeleton[J]. Nature, 2010, 463(7280): 485-492.
[21] Alvarez JA, Frasch AC, Fuchsova B. Neuronal filopodium formation induced by the membrane glycoprotein M6a(Gpm6a)is facilitated by coronin-1a, Rac1, and p21-activated kinase 1(Pak1)[J]. J Neurochem, 2016, 137(1): 46-61.
[22](ˇoverC)ernohorská M, Sulimenko V, Hájková Z, et al. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation[J]. Biochim Biophys Acta, 2016, 1863(6 Pt A): 1282-1297.
[23] Ogawa T, Hirokawa N. Microtubule destabilizer KIF2A undergoes distinct Site-Specific phosphorylation cascades that differentially affect neuronal morphogenesis[J]. Cell Rep, 2015, 12(11): 1774-1788.
[24] Shah K, Rossie S. Tale of the good and the bad Cdk5: remodeling of the actin cytoskeleton in the brain[J]. Mol Neurobiol, 2018, 55(4): 3426-3438.
[25] Jean S, Tremblay MG, Herdman C, et al. The endocytic adapter E-Syt2 recruits the p21 GTPase activated kinase PAK1 to mediate actin dynamics and FGF signalling[J]. Biol Open, 2012, 1(8): 731-738.
[26] F?ler M, Hermann A, Gu S, et al. Chorein-sensitive polymerization of cortical actin and suicidal cell death in chorea-acanthocytosis[J]. FASEB J, 2012, 26(4): 1526-1534.
[27] Delorme V, Machacek M, Dermardirossian C, et al. Cofilin activity downstream of Pak1 regulates cell protrusion efficiency by organizing lamellipodium and lamella actin networks[J]. Dev Cell, 2007, 13(5): 646-662.
[28] Ding Y, Li Y, Lu LC, et al. Inhibition of nischarin expression promotes neurite outgrowth through regulation of PAK activity[J]. PLoS One, 2015, 10(12): e0144948.
[29] Lowery LA, Van Vactor D. The trip of the tip: understanding the growth cone machinery[J]. Nat Rev Mol Cell Biol, 2009, 10(5): 332-343.
[30] 李深,秦华民,蓝晓艳,等.神经细胞粘附分子通过P21活化激酶1促进神经突生长[J].中国组织化学与细胞化学杂志,2013,22(5):416-420.
[31] Sabra H, Brunner M, Mandati V, et al. β1 integrin-dependent Rac/group I PAK signaling mediates YAP activation of yes-associated protein 1(YAP1)via NF2/Merlin[J]. J Biol Chem, 2017, 292(47): 19179-19197.
[32] Kubo Y, Baba KT, Toriyama M, et al. Shootin1-cortactin interaction mediates signal-force transduction for axon outgrowth[J]. J Cell Biol, 2015, 210(4): 663-676.
[33] Baba K, Yoshida W, Toriyama M, et al. Gradient-reading and mechano-effector machinery for netrin-1-induced axon guidance[J]. Elife, 2018, 7(8): e34593.
[34] Srivastava N, Robichaux M, Chenaux G, et al. EphB2 receptor forward signaling controls cortical growth cone collapse via Nck and Pak[J]. Mol Cell Neurosci, 2013, 52(1): 106-116.
[35] Kamiyama D, Mcgorty R, Kamiyama R, et al. Specification of dendritogenesis site in drosophila aCC motoneuron by membrane enrichment of Pak1 through dscam1[J]. Dev Cell, 2015, 35(1): 93-106.
[36] Dagliyan O, Karginov AV, Yagishita S, et al. Engineering Pak1 allosteric switches[J]. ACS Synth Biol, 2017, 6(7): 1257-1262.
[37] Datta D, Arion D, Corradi JP, et al. Altered expression of CDC42 signaling pathway components in cortical layer 3 pyramidal cells in schizophrenia[J]. Biol Psychiatry, 2015, 78(11): 775-785.
[38] Deo AJ, Goldszer IM, Li S, et al. PAK1 protein expression in the auditory cortex of schizophrenia subjects[J]. PLoS One, 2013, 8(4): e59458.
[39] Burden SJ. SnapShot: neuromuscular junction[J]. Cell, 2011, 144(5): 826-826.e1.
[40] Eichler S, Meier JC. E-I balance and human diseases-from molecules to networking[J]. Front Mol Neurosci, 2008, 1(1/8): 2.
[41] Xia S, Zhou ZK, Jia Z. PAK1 regulates inhibitory synaptic function via a novel mechanism mediated by endocannabinoids[J]. Small GTPases, 2018, 9(4): 322-326.
[42] Luo ZG, Wang Q, Jz Z, et al. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1[J]. Neuron, 2002, 35(3): 489-505.
[43] Thomas JL, Moncollin V, Ravel-Chapuis A, et al. PAK1 and CtBP1 regulate the coupling of neuronal activity to muscle chromatin and gene expression[J]. Mol Cell Biol, 2015, 35(24): 4110-4120.
[44] Marín O, Valiente M, Ge X, et al. Guiding neuronal cell migrations[J]. Cold Spring Harb Perspect Biol, 2010, 2(2): a001834.
[45] Kennedy LM, Pham SC, Grishok A. Nonautonomous regulation of neuronal migration by insulin signaling, DAF-16/FOXO, and PAK-1[J]. Cell Rep, 2013, 4(5): 996-1009.
[46] Kim YB, Shin YJ, Roy A, et al. The role of the pleckstrin homology domain-containing protein CKIP-1 in activation of p21-activated kinase 1(PAK1)[J]. J Biol Chem, 2015, 290(34): 21076-21085.
[47] Gstrein T, Edwards A, P(ˇoverr)istoupilová A, et al. Mutations in Vps15 perturb neuronal migration in mice and are associated with neurodevelopmental disease in humans[J]. Nat Neurosci, 2018, 21(2): 207-217.
[48] Golstein P. Controlling cell death[J]. Science, 1997, 275(533): 1081-1082.
[49] Cory S, Huang DC, Adams JM. The Bcl-2 family: roles in cell survival and oncogenesis[J]. Oncogene, 2003, 22(53): 8590-8607.
[50] Schürmann A, Mooney AF, Sanders LC, et al. p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis[J]. Mol Cell Biol, 2000, 20(2): 453-461.
[51] Kim H, Oh JY, Choi SL, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons[J]. Mol Brain, 2016, 9(1): 45.
[52] Ji X, Zhang W, Zhang LH, et al. Inhibition of p21-activated kinase 1 by IPA-3 attenuates secondary injury after traumatic brain injury in mice[J]. Brain Res, 2014, 1585(10): 13-22.
[53] 朱跃华.P21激活激酶1(PAK1)通过p38MAPK调节神经炎症[D].南京:东南大学,2016.
[54] Yoshii S, Tanaka M, Otsuki Y, et al. Involvement of alpha-PAK-interacting exchange factor in the PAK1-c-Jun NH(2)-terminal kinase 1 activation and apoptosis induced by benzo[a]pyrene[J]. Molecular & Cellular Biology, 2001, 21(20):6796-6807.
[55] Lorenzetto E, Ettorre M, Pontelli V, et al. Rac1 selective activation improves retina ganglion cell survival and regeneration[J]. PLoS One, 2013, 8(5): e64350.
[56] Van Battum EY, Brignani S, Pasterkamp RJ. Axon guidance proteins in neurological disorders[J]. Lancet Neurol, 2015, 14(5): 532-546.
[57] Ma QL, Yang F, Calon F, et al. p21-activated kinase-aberrant activation and translocation in alzheimer disease pathogenesis[J]. J Biol Chem, 2008, 283(20): 14132-14143.
[58] Wang B, Li HM, Mutlu S, et al. The amyloid precursor protein is a conserved receptor for slit to mediate Axon guidance[J]. eNeuro, 2017, 4(3): ENEURO.0185-ENEU17.2017.
[59] Zhao L, Ma QL, Calon F, et al. Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease[J]. Nat Neurosci, 2006, 9(2): 234-242.
[60] Hoftman GD, Datta D, Lewis DA. Layer 3 excitatory and inhibitory circuitry in the prefrontal cortex: developmental trajectories and alterations in schizophrenia[J]. Biol Psychiatry, 2017, 81(10): 862-873.
[61] Dienel SJ, Bazmi HH, Lewis DA. Development of transcripts regulating dendritic spines in layer 3 pyramidal cells of the monkey prefrontal cortex: Implications for the pathogenesis of schizophrenia[J]. Neurobiol Dis, 2017, 105(9): 132-141.
[62] Lv KL, Lang AE. Parkinson’s disease[J]. Lancet, 2015, 386(9996): 896-912.
[63] Wu DM, Wang S, Wen X, et al. Suppression of microRNA-342-3p increases glutamate transporters and prevents dopaminergic neuron loss through activating the Wnt signaling pathway via p21-activated kinase 1 in mice with Parkinson’s disease[J]. J Cell Physiol, 2019, 234(6): 9033-9044.
[64] Bagni C, Tassone F, Neri G, et al. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics[J]. J Clin Invest, 2012, 122(12): 4314-4322.
[65] Darnell JC, Klann E. The translation of translational control by FMRP: therapeutic targets for FXS[J]. Nat Neurosci, 2013, 16(11): 1530-1536.
[66] Pyronneau A, He Q, Jy H, et al. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome[J]. Sci Signal, 2017, 10(54): eaan0852.
[67] Chow HY, Dong B, Duron SG, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma[J]. Oncotarget, 2015, 6(4): 1981-1994.
[68] Kim M, Kim S, Lee SH, et al. Merlin inhibits Wnt/β-catenin signaling by blocking LRP6 phosphorylation[J]. Cell Death Differ, 2016, 23(10): 1638-1647.
[69] Kim S, Jho EH. Merlin, a regulator of Hippo signaling, regulates Wnt/β-catenin signaling[J]. BMB Rep, 2016, 49(7): 357-358.
[70] Aoki Y, Niihori T, Banjo T, et al. Gain-of-Function mutations in RIT1 cause noonan syndrome, a RAS/MAPK pathway syndrome[J]. Am J Hum Genet, 2013, 93(1): 173-180.
[71] Meyer Zum Büschenfelde U, Brandenstein LI, Von Elsner L, et al. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1[J]. PLoS Genet, 2018, 14(5): e1007370.