[1]陈阳 张卓伯.MicroRNAs在阿尔茨海默病的发病机制方面的研究进展[J].卒中与神经疾病杂志,2021,28(06):702-704.[doi:10.3969/j.issn.1007-0478.2021.06.021]
点击复制

MicroRNAs在阿尔茨海默病的发病机制方面的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第28卷
期数:
2021年06期
页码:
702-704
栏目:
综述
出版日期:
2021-12-25

文章信息/Info

文章编号:
1007-0478(2021)06-0702-03
作者:
陈阳 张卓伯
150000 哈尔滨医科大学附属第四医院神经内科三病房[陈阳 张卓伯(通信作者)]
分类号:
R742
DOI:
10.3969/j.issn.1007-0478.2021.06.021
文献标志码:
A

参考文献/References:

[1] Lane CA, Hardy J, Schott JM. Alzheimer’s disease[J]. European Journal of Neurology, 2018, 25(1): 59-70.
[2] Nation DA, Sweeney MD, Montagne A, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction[J]. Nat Med, 2019, 25(2): 270-276.
[3] Tiwari S, Atluri V, Kaushik A, et al. Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics[J]. Int J Nanomedicine, 2019, 14(14): 5541-5554.
[4] Khoshnam SE, Winlow W, Farbood Y, et al. Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents[J]. J Stroke, 2017, 19(2): 166-187.
[5] Kou X, Chen D, Chen N.The regulation of microRNAs in alzheimer’s disease[Z],2020:288.
[6] Li W, Li X, Xin X, et al. MicroRNA-613 regulates the expression of brain-derived neurotrophic factor in Alzheimer’s disease[J]. Biosci Trends, 2016, 10(5): 372-377.
[7] Stakos DA, Stamatelopoulos K, Bampatsias D, et al. The alzheimer’s disease Amyloid-Beta hypothesis in cardiovascular aging and disease: JACC focus seminar[J]. J Am Coll Cardiol, 2020, 75(8): 952-967.
[8] Imbimbo BP, Watling M. Investigational BACE inhibitors for the treatment of Alzheimer’s disease[J]. Expert Opin Investig Drugs, 2019, 28(11): 967-975.
[9] Wang Z, Xu P, Chen B, et al. Identifying circRNA-associated-ceRNA networks in the hippocampus of Aβ1-42-induced Alzheimer’s disease-like rats using microarray analysis[J]. Aging, 2018, 10(4): 775-788.
[10] Hu YK, Wang X, Li L, et al. MicroRNA-98 induces an Alzheimer’s disease-like disturbance by targeting insulin-like growth factor 1[J]. Neurosci Bull, 2013, 29(6): 745-751.
[11] Li Q, Li X, Wang L, et al. miR-98-5p Acts as a target for alzheimer’s disease by regulating Aβ production through modulating SNX6 expression[J]. J Mol Neurosci, 2016, 60(4): 413-420.
[12] Luo Q, Chen Y. Long noncoding RNAs and Alzheimer’s disease[J]. Clin Interv Aging, 2016, 11(11): 867-872.
[13] Li S, Yan Y, Jiao Y, et al. Neuroprotective effect of osthole on neuron synapses in an alzheimer’s disease cell model via upregulation of MicroRNA-9[J]. J Mol Neurosci, 2016, 60(1): 71-81.
[14] Zhao J, Liu X, Xia W, et al.Targeting amyloidogenic processing of APP in alzheimer’s disease[Z],2020:137.
[15] Wang SW, Deng LX, Chen HY, et al. MiR-124 affects the apoptosis of brain vascular endothelial cells and ROS production through regulating PI3K/AKT signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(2): 498-505.
[16] Zhu H, Wang J, Shao Y, et al.Catalpol May improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia[Z],2019:306.
[17] Takeda S. Progression of alzheimer’s disease, tau propagation, and its modifiable risk factors[J]. Neurosci Res, 2019, 141(10): 36-42.
[18] Zhao Y, Jaber VR, Lebeauf A, et al.microRNA-34a(miRNA-34a)mediated down-regulation of the post-synaptic cytoskeletal element SHANK3 in sporadic alzheimer’s disease(AD).front neurol[Z],2019:28.
[19] Kang Q, Xiang Y, Li D, et al. MiR-124-3p attenuates hyperphosphorylation of Tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells[J]. Oncotarget, 2017, 8(15): 24314-24326.
[20] Hansen KF, Sakamoto K, Aten S, et al. Targeted deletion of miR-132/-212 impairs memory and alters the hippocampal transcriptome[J]. Learn Mem, 2016, 23(2): 61-71.
[21] Ozben T, Ozben S. Neuro-inflammation and anti-inflammatory treatment options for Alzheimer’s disease[J]. Clin Biochem, 2019, 72(6): 87-89.
[22] Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? [J]. Nat Neurosci, 2016, 19(9): 987-991.
[23] Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease[J]. N Engl J Med, 2013, 368(2): 117-127.
[24] Uddin MS, Kabir MT, Al Mamun A, et al. APOE and alzheimer’s disease: evidence mounts that targeting APOE4 May combat alzheimer’s pathogenesis[J]. Mol Neurobiol, 2019, 56(4): 2450-2465.
[25] Liu Q, Zhang H, Lin J, et al. C1q/TNF-related protein 9 inhibits the cholesterol-induced Vascular smooth muscle cell phenotype Switch and cell dysfunction by activating AMP-dependent kinase[J]. J Cell Mol Med, 2017, 21(11): 2823-2836.
[26] Kim J, Yoon H, Horie T, et al. microRNA-33 regulates ApoE lipidation and amyloid-β metabolism in the brain[J]. J Neurosci, 2015, 35(44): 14717-14726.
[27] Jan A, Karasinska JM, Kang MH, et al. Direct intracerebral delivery of a miR-33 antisense oligonucleotide into mouse brain increases brain ABCA1 expression[J]. Neurosci Lett, 2015, 598(3): 66-72.
[28] Toth P, Tarantini S, Csiszar A, et al. Functional vascular contributions to cognitive impairment and dementia: mechanisms and Consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging[J]. Am J Physiol Heart Circ Physiol, 2017, 312(1): H1-H20.
[29] Weldon FJ, Morales-Scheihing D, Manwani B, et al. Alzheimer’s disease and MicroRNA:miRNA as diagnostic biomarkers and potential therapeutic targets[J]. Neuromolecular Med, 2019, 21(4): 369-390.
[30] Weller J, Budson A.Current understanding of Alzheimer’s disease diagnosis and treatment[Z],2018:7.

更新日期/Last Update: 1900-01-01