[1]钱小娟 刘娜 张杨等.病理性α-突触核蛋白跨细胞传播的研究进展[J].卒中与神经疾病杂志,2022,29(02):189-191.[doi:10.3969/j.issn.1007-0478.2022.02.020]
点击复制

病理性α-突触核蛋白跨细胞传播的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第29卷
期数:
2022年02期
页码:
189-191
栏目:
综 述
出版日期:
2022-04-25

文章信息/Info

文章编号:
1007-0478(2022)02-0189-04
作者:
钱小娟 刘娜 张杨等
830028 乌鲁木齐,新疆医科大学附属第二医院神经内科[钱小娟 刘娜 张杨 杨新玲(通信作者)]
分类号:
R742.5
DOI:
10.3969/j.issn.1007-0478.2022.02.020
文献标志码:
A

参考文献/References:

[1] Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson’s disease[J]. Lancet Neurol, 2020, 19(2): 170-178.
[2] 陈宗元,黄春丽,官检发,等.帕金森病的流行病学、发病机制及药物的研究进展[J].海峡药学,2018,30(3):48-50.
[3] Postuma RB, Berg D. Advances in markers of prodromal Parkinson disease[J]. Nat Rev Neurol, 2016, 12(11): 622-634.
[4] Dickson DW. Parkinson’s disease and parkinsonism:neuropathology[J]. Cold Spring Harb Perspect Med, 2012, 2(8): a009258.
[5] Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease[J]. Neurobiol Dis, 2018, 109(Pt B): 249-257.
[6] 刘长亮,毛晓波.致病性α-synuclein在帕金森病中的神经毒性与传播机制[J].广西医科大学学报,2020,37(2):159-164.
[7] 张美美,冯涛.α-突触核蛋白致病机制研究进展[J].中华神经科杂志,2020,53(3):227-231.
[8] Ono K, Yamada M. Alpha-Synuclein in blood and cerebrospinal fluid of patients with alpha-synucleinopathy[J]. Rinsho Byori, 2014, 62(3): 241-245.
[9] Cremades N, Cohen S, Deas E, et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein[J]. Cell, 2012, 149(5): 1048-1059.
[10] Delenclos M, Burgess JD, Lamprokostopoulou A, et al. Cellular models of alpha-synuclein toxicity and aggregation[J]. J Neurochem, 2019, 150(5): 566-576.
[11] 毛婷婷,陈煜森.α-突触核蛋白在帕金森病发病机制中的研究进展[J].海南医学,2020,31(11):1460-1463.
[12] Atik A, Stewart T, Zhang J. Alpha-Synuclein as a biomarker for parkinson’s disease[J]. Brain Pathol, 2016, 26(3): 410-418.
[13] Du XY, Xie XX, Liu RT. The role of α-Synuclein oligomers in parkinson’s disease[J]. Int J Mol Sci, 2020, 21(22): 8645.
[14] Mehra S, Sahay S, Maji SK. α-Synuclein misfolding and aggregation: implications in parkinson’s disease pathogenesis[J]. Biochim Biophys Acta Proteins Proteom, 2019, 1867(10): 890-908.
[15] Beyer K, Ariza A. α-Synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration[J]. Mol Neurobiol, 2013, 47(2): 509-524.
[16] Pouclet H, Lebouvier T, Coron E, et al. A comparison between rectal and colonic biopsies to detect Lewy pathology in Parkinson’s disease[J]. Neurobiol Dis, 2012, 45(1): 305-309.
[17] Burré J. The synaptic function of α-Synuclein[J]. J Parkinsons Dis, 2015, 5(4): 699-713.
[18] Bartels T, Choi JG, Selkoe DJ. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation[J]. Nature, 2011, 477(7362): 107-110.
[19] Miraglia F, Ricci A, Rota L, et al. Subcellular localization of alpha-synuclein aggregates and their interaction with membranes[J]. Neural Regen Res, 2018, 13(7): 1136-1144.
[20] Ludtmann M, Angelova PR, Horrocks MH, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in parkinson’s disease[J]. Nat Commun, 2018, 9(1): 2293.
[21] Di Maio R, Barrett PJ, Hoffman EK, et al. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in parkinson’s disease[J]. Sci Transl Med, 2016, 8(342): 342ra78.
[22] De Miranda BR, Rocha EM, Castro SL, et al. Protection from α-Synuclein induced dopaminergic neurodegeneration by overexpression of the mitochondrial import receptor TOM20[J]. NPJ Parkinsons Dis, 2020, 6(1): 38.
[23] Danyu L, Yanran L, Xiuna J, et al. α-Synuclein induced mitochondrial dysfunction via cytochrome c oxidase subunit 2 in SH-SY5Y cells.Exp[J]. Cell Res, 2019, 378(1): 57-65.
[24] Melo TQ, van Zomeren KC, Ferrari MF, et al. Impairment of mitochondria dynamics by human A53T α-synuclein and rescue by NAP(davunetide)in a cell model for Parkinson’s disease[J]. Exp Brain Res, 2017, 235(3): 731-742.
[25] Prots I, Grosch J, Brazdis RM, et al. α-Synuclein oligomers induce early axonal dysfunction in human iPSC-based models of synucleinopathies[J]. Proc Natl Acad Sci USA, 2018, 115(30): 7813-7818.
[26] Lindstr? V, Gustafsson G, Sanders LH, et al. Extensive uptake of α-synuclein oligomers in astrocytes results in sustained intracellular deposits and mitochondrial damage[J]. Mol Cell Neurosci, 2017, 82: 143-156.
[27] Bae EJ, Lee SJ. The LRRK2-RAB axis in regulation of vesicle trafficking and α-synuclein propagation[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(3): 165632.
[28] Daher JP. Interaction of LRRK2 and α-Synuclein in parkinson’s disease[J]. Adv Neurobiol, 2017, 14: 209-226.
[29] Schapansky J, Khasnavis S, Deandrade MP, et al. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons[J]. Neurobiol Dis, 2018, 111: 26-35.
[30] 张国新.LRRK2基因多态性与华中地区汉族散发性帕金森病的相关性研究[D].武汉:华中科技大学,2015:D735066.
[31] Tolosa E, Vila M, Klein C, et al. LRRK2 in parkinson disease: challenges of clinical trials[J]. Nat Rev Neurol, 2020, 16(2): 97-107.
[32] Bieri G, Brahic M, Bousset L, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons[J]. Acta Neuropathol, 2019, 137(6): 961-980.
[33] Mao X, Ou MT, Karuppagounder SS, et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3[J]. Science, 2016, 353(637): aah3374.
[34] Wood H. Parkinson disease: LAG3 facilitates cell-to-cell spread of α-synuclein pathology[J]. Nat Rev Neurol, 2016, 12(12): 678.
[35] Guo W, Zhou M, Qiu J, et al. Association of LAG3 genetic variation with an increased risk of PD in Chinese female population[J]. J Neuroinflammation, 2019, 16(1): 270.
[36] Angelopoulou E, Paudel YN, Villa C, et al. Lymphocyte-Activation gene 3(LAG3)protein as a possible therapeutic target for parkinson’s disease: molecular mechanisms connecting neuroinflammation to α-Synuclein spreading pathology[J]. Biology(Basel), 2020, 9(4): 86.
[37] Fernández-Valle T, Gabilondo I, Gómez-Esteban JC. New therapeutic approaches to target alpha-synuclein in Parkinson’s disease: The role of immunotherapy[J]. Int Rev Neurobiol, 2019, 146: 281-295.
[38] Gelpi E, Navarro-Otano J, Tolosa E, et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders[J]. Mov Disord, 2014, 29(8): 1010-1018.
[39] Uemura N, Yagi H, Uemura MT, et al.Limited spread of pathology within the brainstem of α-synuclein BAC transgenic mice inoculated with preformed fibrils into the gastrointestinal tract[Z],2020:134651.
[40] 王东旭,冯涛.帕金森病肠道起源学说的研究进展[J].中华神经科杂志,2019,52(4):349-352.
[41] Svensson E, Horvath-Puho E, Thomsen RW, et al. Vagotomy and subsequent risk of Parkinson’s disease[J]. Movement Disorders, 2015, 30(1): S445-S446.
[42] Holmqvist S, Chutna O, Bousset L, et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats[J]. Acta Neuropathol, 2014, 128(6): 805-820.
[43] Uemura N, Yagi H, Uemura MT, et al. Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve[J]. Mol Neurodegener, 2018, 13(1): 21.
[44] Sharon G, Sampson TR, Geschwind DH, et al. The central nervous system and the gut microbiome[J]. Cell, 2016, 167(4): 915-932.
[45] Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota[J]. Nat Rev Microbiol, 2016, 14(1): 20-32.
[46] Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease[Z],2016.
[47] Sampson TR, Debelius JW, Thron T, et al.Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease[Z],2016.
[48] Best L, Ghadery C, Pavese N, et al. New and old TSPO PET radioligands for imaging brain microglial activation in neurodegenerative disease[J]. Curr Neurol Neurosci Rep, 2019, 19(5): 24.
[49] Marogianni C, Sokratous M, Dardiotis E, et al. Neurodegeneration and inflammation-an interesting interplay in Parkinson’s disease[J]. Int J Mol Sci, 2020, 21(22):8421.
[50] Lindestam AC, Dhanwani R, Pham J, et al. α-Synuclein-specific T cell reactivity is associated with preclinical and early parkinson’s disease[J]. Nat Commun, 2020, 11(1): 1875.
[51] Alvarez-Erviti L, Seow Y, Schapira AH, et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission[J]. Neurobiol Dis, 2011, 42(3): 360-367.
[52] Stuendl A, Kunadt M, Kruse N, et al. Induction of α-synuclein aggregate formation by CSF exosomes from patients with Parkinson’s disease and dementia with Lewy bodies[J]. Brain, 2016, 139(Pt 2): 481-494.

备注/Memo

备注/Memo:
基金项目:自治区科技支疆项目(编号为201909428); 国家自然科学基金项目(编号为81960243)
更新日期/Last Update: 1900-01-01