[1]周艳杰 邱涛 胡露宇 方玉婷 肖哲曼.癫痫大鼠模型中小胶质细胞激活的脑区特点[J].卒中与神经疾病杂志,2022,29(03):262-266.[doi:10.3969/j.issn.1007-0478.2022.03.014]
 Zhou Yanjie,Qiu Tao,Hu Luyu,et al.Characteristics of microglial activation in epileptic rat model[J].Stroke and Nervous Diseases,2022,29(03):262-266.[doi:10.3969/j.issn.1007-0478.2022.03.014]
点击复制

癫痫大鼠模型中小胶质细胞激活的脑区特点()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第29卷
期数:
2022年03期
页码:
262-266
栏目:
癫 痫
出版日期:
2022-06-25

文章信息/Info

Title:
Characteristics of microglial activation in epileptic rat model
文章编号:
1007-0478(2022)03-0262-05
作者:
周艳杰 邱涛 胡露宇 方玉婷 肖哲曼
430060 武汉大学人民医院神经内科[周艳杰 邱涛 胡露宇 方玉婷 肖哲曼(通信作者)]
Author(s):
Zhou Yanjie Qiu Tao Hu Luyu et al.
Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060
关键词:
癫痫 小胶质细胞 丘脑皮层环路 梨状皮质 丘脑室旁核
Keywords:
Epilepsy Microglia Thalamus-cortex neural circuit Piriform cortex Paraventricular nucleus of thalam
分类号:
R742.1
DOI:
10.3969/j.issn.1007-0478.2022.03.014
文献标志码:
A
摘要:
目的 探讨小胶质细胞在癫痫中的激活特点及其在癫痫中的作用。方法 将12只Sprague-Dawley(SD)雄性大鼠随机分为对照组和癫痫组,每组各6只; 癫痫组采用氯化锂-匹鲁卡品腹腔注射的方法造模,对照组给予等量生理盐水; 癫痫发作4 d后取大鼠脑组织,采用蛋白质免疫印迹法(Western blot)和免疫组化的方法研究各组电离钙结合适配器分子-1(Ionized calcium binding adaptor molecule 1,Iba1)+小胶质细胞的表达情况。结果 与对照组大鼠模型相比,癫痫组大鼠丘脑皮层环路Iba1的表达增加,小胶质细胞的激活程度增加,且小胶质细胞特异性地在梨状皮质、丘脑室旁核、丘脑外侧背核,腹外侧部分以及腹内侧丘脑核增生。结论 癫痫发作后小胶质细胞的激活和增生存在着明显的脑区选择性,抑制丘脑皮层环路小胶质细胞的激活有望成为癫痫治疗的靶点。
Abstract:
Objective To investigate the activation characteristics and role of microglia in epilepsy.Methods 12 male SD rats were randomly divided into two groups equally as the control group and the epilepsy group. The epilepsy group was modeled with a lithium-pilocarpine intraperitoneal injection, and the control group was given the same amount of normal saline. Western blot and immunohistochemistry were used to study the expression of Iba1+ microglia in rats four days after an epileptic seizure.Results Compared with the control group, the expression of Iba1 in the thalamic cortical circuit and the activation degree of microglia were increased in the epileptic group, and microglia were specifically hyperplasia in the piriform cortex, paraventricular thalamic nucleus, lateral dorsal thalamic nucleus, ventrolateral part, and ventromedial thalamic nucleus.Conclusion The activation and proliferation of microglia after epileptic seizures were highly selective in brain regions. Inhibition of microglial activation in thalamic cortical circuitry was expected to target epilepsy treatment.

参考文献/References:

[1] Definition FE, Classification. Pathophysiology,and epidemiology[J]. Semin Neurol, 2020, 40(6): 617-623.
[2] Righes MJ, Vendramin PM, Calcagnotto ME. GABAergic interneurons in epilepsy: More than a simple change in inhibition[J]. Epilepsy Behav, 2021, 121(Pt B): 106935.
[3] Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions[J]. Expert Rev Neurother, 2006, 6(3): 397-406.
[4] Tan TH, Perucca P, O’brien TJ, et al. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease[J]. Epilepsia, 2021, 62(2): 303-324.
[5] Hiragi T, Ikegaya Y, Koyama R. Microglia after Seizures and in Epilepsy[J]. Cells, 2018, 7(4): 26.
[6] Eyo UB, Murugan M, Wu LJ. Microglia-Neuron communication in epilepsy[J]. Glia, 2017, 65(1): 5-18.
[7] Kilkenny C, Browne WJ, Cuthill IC, et al. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research[J]. PLoS Biol, 2010, 8(6): e1000412.
[8] Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure[J]. Electroencephalogr Clin Neurophysiol, 1972, 32(3): 281-294.
[9] Hendrickxd AE, Van Eden CG, Schuurrman KG, et al. Staining of HLA-DR, Iba1 and CD68 in human microglia reveals partially overlapping expression depending on cellular morphology and pathology [J]. Journal of neuroimmunology, 2017, 309(7): 12-22.
[10] Boer K, Spliet WG, Van RP, et al. Evidence of activated microglia in focal cortical dysplasia[J]. J Neuroimmunol, 2006, 173(1/2): 188-195.
[11] Avignone E, Ulmann L, Levavasseur F, et al. Status epilepticus induces a particular microglial activation state characterized by enhanced purinergic signaling[J]. J Neurosci, 2008, 28(37): 9133-9144.
[12] Kinoshita S, Koyama R. Pro- and anti-epileptic roles of microglia[J]. Neural Regen Res, 2021, 16(7): 1369-1371.
[13] Corvace F, Faustmann TJ, Faustmann PM, et al. Anti-inflammatory properties of lacosamide in an astrocyte-microglia co-culture model of inflammation [J]. European journal of pharmacology, 2021: 174696.
[14] Victor TR, Tsirka SE. Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy[J]. Neuroimmunol Neuroinflamm, 2020, 7(2): 234-247.
[15] Andoh M, Ikegaya Y, Koyama R. Synaptic pruning by microglia in epilepsy[J]. J Clin Med, 2019, 8(12): 2170.
[16] Somani A, El-Hachami H, Patodia S, et al. Regional microglial populations in central autonomic brain regions in SUDEP[J]. Epilepsia, 2021, 62(6): 1318-1328.
[17] Cheng H, Wang Y, Chen J, et al. The piriform cortex in epilepsy: What we learn from the kindling model[J]. Exp Neurol, 2020, 324(37): 113137.
[18] Koepp M, Galovic M. Functional imaging of the piriform cortex in focal epilepsy[J]. Exp Neurol, 2020, 330(5): 113305.
[19] L?cher W, Ebert U. The role of the piriform cortex in kindling[J]. Prog Neurobiol, 1996, 50(5/6): 427-481.
[20] Williams D. The thalamus and epilepsy[J]. Brain, 1965, 88(3): 539-556.
[21] Salanova V. Deep brain stimulation for epilepsy[J]. Epilepsy Behav, 2018, 88S(4): 21-24.
[22] Maceachern SJ, Santoro JD, Hahn KJ, et al. Children with epilepsy demonstrate macro- and microstructural changes in the thalamus, putamen, and amygdala[J]. Neuroradiology, 2020, 62(3): 389-397.
[23] Zhang X, Ju G, Le Gal La Salle G. Fos expression in GHB-induced generalized absence epilepsy in the thalamus of the rat[J]. Neuroreport, 1991, 2(8): 469-472.
[24] Wicker E, Forcelli PA. Optogenetic activation of the reticular nucleus of the thalamus attenuates limbic seizures via inhibition of the midline thalamus[J]. Epilepsia, 2021, 62(9): 2283-2296.
[25] Wicker E, Forcelli PA. Chemogenetic silencing of the midline and intralaminar thalamus blocks amygdala-kindled seizures[J]. Exp Neurol, 2016, 283(Pt A): 404-412.
[26] Zhang DX, Bertram EH. Suppressing limbic seizures by stimulating medial dorsal thalamic nucleus: factors for efficacy[J]. Epilepsia, 2015, 56(3): 479-488.
[27] Druga R, Mares P, Otáhal J, et al. Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages[J]. Epilepsy Res, 2005, 63(1): 43-65.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81971055)
更新日期/Last Update: 1900-01-01