参考文献/References:
[1] Gauthier S, Rosa-Neto P, Morais JA, et al. World Alzheimer Report 2021: Journey through the diagnosis of dementia[R]. London, England: Alzheimer’s Disease International,2021:19
[2] Folke J, Pakkenberg B, Brudek T. Impaired Wnt signaling in the prefrontal cortex of alzheimer’s disease[J]. Mol Neurobiol, 2019, 56(2): 873-891.
[3] Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt signalling in the alzheimer’s brain[J]. Brain Sci, 2020, 10(12): 902.
[4] Palomer E, Buechler J, Salinas PC. Wnt signaling deregulation in the aging and alzheimer’s brain[J]. Front Cell Neurosci, 2019, 13: 227.
[5] Hübner K, Cabochette P, Diéguez-Hurtado R, et al. Wnt/β-catenin signaling regulates VE-cadherin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling[J]. Nat Commun, 2018, 9(1): 4860.
[6] Yang Y, Zhang Z. Microglia and Wnt pathways: prospects for inflammation in alzheimer’s disease[J]. Front Aging Neurosci, 2020, 12: 110.
[7] Park HB, Kim JW, Baek KH. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers[J]. Int J Mol Sci, 2020, 21(11): 3904.
[8] Gao J, Liao Y, Qiu M, et al. Wnt/β-Catenin signaling in neural stem cell homeostasis and neurological diseases[J]. Neuroscientist, 2021, 27(1): 58-72.
[9] Huang P, Yan R, Zhang X, et al. Activating Wnt/β-catenin signaling pathway for disease therapy: Challenges and opportunities[J]. Pharmacol Ther, 2019, 196: 79-90.
[10] Liu X, Wang K, Wei X, et al. Interaction of NF-κB and Wnt/β-catenin Signaling Pathways in Alzheimer’s Disease and Potential Active Drug Treatments[J]. Neurochem Res, 2021, 46(4): 711-731.
[11] Vignaux PA, Minerali E, Foil DH, et al. Machine learning for discovery of GSK3β inhibitors[J]. ACS Omega, 2020, 5(41): 26551-26561.
[12] Zhao Y, Wang Z, Mao Y, et al. NEAT1 regulates microtubule stabilization via FZD3/GSK3β/P-tau pathway in SH-SY5Y cells and APP/PS1 mice[J]. Aging, 2020, 12(22): 23233-23250.
[13] Llorach-Pares L, Rodriguez-Urgelles E, Nonell-Canals A, et al. Meridianins and lignarenone B as potential GSK3β inhibitors and inductors of structural neuronal plasticity[J]. Biomolecules, 2020, 10(4): 639.
[14] Liu F, Tian N, Zhang HQ, et al. GSK-3β activation accelerates early-stage consumption of Hippocampal Neurogenesis in senescent mice[J]. Theranostics, 2020, 10(21): 9674-9685.
[15] Tay L, Leung B, Yeo A, et al. Elevations in serum dickkopf-1 and disease progression in Community-Dwelling older adults with mild cognitive impairment and Mild-to-Moderate alzheimer’s disease[J]. Front Aging Neurosci, 2019, 11: 278.
[16] Shi L, Winchester LM, Liu BY, et al. Dickkopf-1 over expression in vitro nominates candidate blood biomarkers relating to Alzheimer’s disease pathology[J]. Journal of Alzheimer’s disease, 2020, 77(3):1353-1368.
[17] Tian Z, Zhang X, Zhao Z, et al. The Wnt/β-catenin signaling pathway affects the distribution of cytoskeletal proteins in Aβ treated PC12 cells[J]. J Integr Neurosci, 2019, 18(3): 309-312.
[18] Ross SP, Baker KE, Fisher A, et al. miRNA-431 prevents Amyloid-β-Induced synapse loss in neuronal cell culture model of alzheimer’s disease by silencing kremen1[J]. Front Cell Neurosci, 2018, 12: 87.
[19] Rma B, Pba C, Fca C, et al. Dickkopf-related protein-1 inhibition attenuates amyloid-beta pathology associated to Alzheimer’s disease[J]. Neurochemistry International, 2020, 141:104881.
[20] Zhang N, Parr C, Birch AM, et al. The amyloid precursor protein binds to β-catenin and modulates its cellular distribution[J]. Neurosci Lett, 2018, 685: 190-195.
[21] Wang Y, Wang Q, Li J, et al. Glutamine improves oxidative stress through the Wnt3a/β-Catenin signaling pathway in alzheimer’s disease in vitro and in vivo[J]. Biomed Res Int, 2019(3): 4690280.
[22] Song D, Zhang X, Chen J, et al. Wnt canonical pathway activator TWS119 drives microglial anti-inflammatory activation and facilitates neurological recovery following experimental stroke[J]. J Neuroinflammation, 2019, 16(1): 256.
[23] Meilandt WJ, Ngu H, Gogineni A, et al. Trem2 deletion reduces Late-Stage amyloid plaque accumulation, elevates the Aβ42:Aβ40 ratio, and exacerbates axonal dystrophy and dendritic spine loss in the PS2APP alzheimer’s mouse model[J]. J Neurosci, 2020, 40(9): 1956-1974.
[24] Van SJ, Schang AL, Krishnan ML, et al. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain[J]. Brain, 2019, 142(12): 3806-3833.
[25] Pons V, Pascal Lévesque, Marie-Michèle Plante, et al. Conditional genetic deletion of CSF1 receptor in microglia ameliorates the physiopathology of Alzheimer’s disease[J]. Alzheimer’s Research & Therapy, 2021, 13(1):8.
[26] Liebner S, Dijkhuizen RM, Reiss Y, et al. Functional morphology of the blood-brain barrier in health and disease[J]. Acta Neuropathol, 2018, 135(3): 311-336.
[27] Manandhar S, Kabekkodu SP, Pai K. Aberrant canonical Wnt signaling: Phytochemical based modulation[J]. Phytomedicine, 2020, 76(prepublish): 153243.
[28] Persad A, Venkateswaran G, Hao L, et al. Active β-catenin is regulated by the PTEN/PI3 kinase pathway: a role for protein phosphatase PP2A[J]. Genes Cancer, 2016, 7(11/12): 368-382.
[29] Protein phosphatase 2A as a drug target in the treatment of cancer and Alzheimer’s disease[J]. Current Medical Science, 2020,40(1): 1-8.
[30] Min H, Liang Y, Chen H, et al. The role of fluoxetine in activating Wnt/β-catenin signaling and repressing β-Amyloid production in an Alzheimer mouse model[J]. Frontiers in Aging Neuroscience, 2018, 10:164.
[31] Chiroma SM, Baharuldin M, Mat TC, et al. Centella asiatica Protects d-Galactose/AlCl(3)Mediated Alzheimer’s Disease-Like Rats via PP2A/GSK-3β Signaling Pathway in Their Hippocampus[J]. Int J Mol Sci, 2019, 20(8): 1871.