参考文献/References:
[1] Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer's disease[J]. N Engl J Med, 2021, 397(1284): 1577-1590.
[2] Forner S, Baglietto-Vargas D, Martini AC, et al. Synaptic impairment in alzheimer's disease: a dysregulated symphony[J]. Trends Neurosci, 2017, 40(6): 347-357.
[3] Gendron TF, Petrucelli L. The role of tau in neurodegeneration[J]. Mol Neurodegener, 2009, 4(1): 13.
[4] Wegmann S, Biernat J, Mandelkow E. A current view on Tau protein phosphorylation in Alzheimer's disease[J]. Curr Opin Neurobiol, 2021, 69: 131-138.
[5] Losev Y, Frenkel-Pinter M, Abu-Hussien M, et al. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer's disease-related neurodegeneration[J]. Cell Mol Life Sci, 2021, 78(5): 2231-2245.
[6] Shin MK, Vázquez-Rosa E, Koh Y, et al. Reducing acetylated tau is neuroprotective in brain injury[J]. Cell, 2021, 184(10): 2715-2732.e23.
[7] Wang W, Zhou Q, Jiang T, et al. A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-like models[J]. Theranostics, 2021, 11(11): 5279-5295.
[8] Alquezar C, Arya S, Kao AW. Tau post-translational modifications: dynamic transformers of Tau function, degradation, and aggregation[J]. Front Neurol, 2020, 11: 595532.
[9] Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer's disease[J]. Ageing Res Rev, 2013, 12(1): 289-309.
[10] Yamaguchi H, Ishiguro K, Uchida T, et al. Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase(TPK)I/glycogen synthase kinase-3 beta and cyclin-dependent kinase 5, a component of TPK II[J]. Acta Neuropathol, 1996, 92(3): 232-241.
[11] Ishizawa T, Sahara N, Ishiguro K, et al. Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice[J]. Am J Pathol, 2003, 163(3): 1057-1067.
[12] Yang W, Liu Y, Xu QQ, et al. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated Tau protein via regulating the PI3K/Akt/GSK-3β pathway in experimental models of alzheimer's disease[J]. Oxid Med Cell Longev, 2020: 4754195.
[13] Gómez De Barreda E, Pérez M, Gómez Ramos P, et al. Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits[J]. Neurobiol Dis, 2010, 37(3): 622-629.
[14] Kimura T, Ishiguro K, Hisanaga S. Physiological and pathological phosphorylation of tau by Cdk5[J]. Front Mol Neurosci, 2014, 7: 65.
[15] Lopes JP, Agostinho P. Cdk5: multitasking between physiological and pathological conditions[J]. Prog Neurobiol, 2011, 94(1): 49-63.
[16] Haukedal H, Freude KK. Implications of glycosylation in alzheimer's disease[J]. Front Neurosci, 2020, 14: 625348.
[17] Hamm A, Tang H, Wu Y, et al. Tau abnormalities and the potential therapy in alzheimer's disease[J]. J Alzheimers Dis, 2019, 67(1): 13-33.
[18] Fischer PM. Turning down tau phosphorylation[J]. Nat Chem Biol, 2008, 4(8): 448-449.
[19] Caballero B, Bourdenx M, Luengo E, et al. Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice[J]. Nat Commun, 2021, 12(1): 2238.
[20] Tracy TE, Sohn PD, Minami SS, et al. Acetylated Tau obstructs KIBRA-Mediated signaling in synaptic plasticity and promotes Tauopathy-Related memory loss[J]. Neuron, 2016, 90(2): 245-260.
[21] Min SW, Chen X, Tracy TE, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits[J]. Nat Med, 2015, 21(10): 1154-1162.
[22] Wang X, Liu EJ, Liu Q, et al. Tau acetylation in entorhinal cortex induces its chronic hippocampal propagation and cognitive deficits in mice[J]. J Alzheimers Dis, 2020, 77(1): 241-255.
[23] Weng FL, He L. Disrupted ubiquitin proteasome system underlying tau accumulation in Alzheimer's disease[J]. Neurobiol Aging, 2021, 99: 79-85.
[24] Munari F, Mollica L, Valente C, et al. Structural basis for Chaperone-Independent ubiquitination of Tau protein by its E3 ligase CHIP[J]. Angew Chem Int Ed Engl, 2022, 61(15): e202112374.
[25] Munari F, Barracchia CG, Franchin C, et al. Semisynthetic and Enzyme-Mediated conjugate preparations illuminate the Ubiquitination-Dependent aggregation of Tau protein[J]. Angew Chem Int Ed Engl, 2020, 59(16): 6607-6611.
[26] Puangmalai N, Sengupta U, Bhatt N, et al. Lysine 63-linked ubiquitination of tau oligomers contributes to the pathogenesis of Alzheimer's disease[J]. Journal of Biological Chemistry, 2022, 298(4): 101766.
[27] Kadavath H, Hofele RV, Biernat J, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers[J]. Proc Natl Acad Sci USA, 2015, 112(24): 7501-7506.
[28] Kanaan NM, Morfini GA, Lapointe NE, et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases[J]. J Neurosci, 2011, 31(27): 9858-9868.
[29] Swanson E, Breckenridge L, Mcmahon L, et al. Extracellular Tau oligomers induce invasion of endogenous Tau into the somatodendritic compartment and axonal transport dysfunction[J]. J Alzheimers Dis, 2017, 58(3): 803-820.
[30] Mcinnes J, Wierda K, Snellinx A, et al. Synaptogyrin-3 mediates presynaptic dysfunction induced by Tau[J]. Neuron, 2018, 97(4): 823-835.e8.
[31] Moreno H, Morfini G, Buitrago L, et al. Tau pathology-mediated presynaptic dysfunction[J]. Neuroscience, 2016, 325: 30-38.
[32] Sun L, Zhou R, Yang G, et al. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase[J]. Proc Natl Acad Sci USA, 2017, 114(4): E476-E485.
[33] Velasco PT, Heffern MC, Sebollela A, et al. Synapse-binding subpopulations of Aβ oligomers sensitive to peptide assembly blockers and scFv antibodies[J]. ACS Chem Neurosci, 2012, 3(11): 972-981.
[34] Bilousova T, Miller CA, Poon WW, et al. Synaptic amyloid-β oligomers precede p-Tau and differentiate high pathology control cases[J]. Am J Pathol, 2016, 186(1): 185-198.
[35] Klementieva O, Willén K, Martinsson I, et al. Pre-plaque conformational changes in Alzheimer's disease-linked Aβ and APP[J]. Nat Commun, 2017, 8(1): 14726.
[36] Tu S, Okamoto S, Lipton SA, et al. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer's disease[J]. Mol Neurodegener, 2014, 9(1): 48.
[37] Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory[J]. Nat Med, 2008, 14(8): 837-842.
[38] Decker H, Lo KY, Unger SM, et al. Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons[J]. J Neurosci, 2010, 30(27): 9166-9171.
[39] Baleriola J, Walker CA, Jean YY, et al. Axonally synthesized ATF4 transmits a neurodegenerative signal across brain regions[J]. Cell, 2014, 158(5): 1159-1172.
[40] Li DN, Matthews SP, Antoniou A, et al. Multistep autoactivation of asparaginyl endopeptidase in vitro and in vivo[J]. J Biol Chem, 2003, 278(40): 38980-38990.
[41] Zhang Z, Song M, Liu X, et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease[J]. Nat Med, 2014, 20(11): 1254-1262.
[42] Zhang Z, Song M, Liu X, et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease[J]. Nat Commun, 2015, 6(1): 8762.
[43] Zhang X, Zou L, Meng L, et al. Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction[J]. eLife, 2021, 10:e65301.
[43] Zhang X, Zou L, Meng L, et al. Amphiphysin I cleavage by asparagine endopeptidase leads to tau hyperphosphorylation and synaptic dysfunction[J]. Elife, 2021, 10: e65301.