[1]李锐韬,何郴涛,陈真真,等.进展期帕金森病患者丘脑区功能连接的静息态功能磁共振研究[J].卒中与神经疾病杂志,2023,30(01):33-41.[doi:10.3969/j.issn.1007-0478.2023.01.006]
 Li Ruitao*,He Chentao,Chen Zhenzhen,et al.Resting-state functional connectivity of thalamic nuclei in advanced Parkinson's disease[J].Stroke and Nervous Diseases,2023,30(01):33-41.[doi:10.3969/j.issn.1007-0478.2023.01.006]
点击复制

进展期帕金森病患者丘脑区功能连接的静息态功能磁共振研究()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第30卷
期数:
2023年01期
页码:
33-41
栏目:
论著
出版日期:
2023-03-20

文章信息/Info

Title:
Resting-state functional connectivity of thalamic nuclei in advanced Parkinson's disease
文章编号:
1007-0478(2023)01-0033-09
作者:
李锐韬何郴涛陈真真黄文琳李彦王丽敏王丽娟张玉虎
510080 广州,广东省心血管病研究所(李锐韬); 广东省人民医院(广东省医学科学院)神经内科、广东省神经科学研究所(何郴涛 陈真真 黄文琳 李彦 王丽敏 王丽娟); 广东省人民医院(广东省医学科学院)神经内科、广东省心血管病研究所[张玉虎(通信作者)]
Author(s):
Li Ruitao* He Chentao Chen Zhenzhen et al.
*Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou Guangdong 510080
关键词:
进展期帕金森病 丘脑亚区 功能连接 磁共振功能成像 认知功能障碍
Keywords:
Advanced Parkinson's disease Thalamic nuclei Functional connectivity Functional magnetic resonance imaging Cognitive impairment
分类号:
R742.5
DOI:
10.3969/j.issn.1007-0478.2023.01.006
文献标志码:
A
摘要:
目的 以静息态功能磁共振的研究方法探索进展期帕金森病(Advanced Parkinson's disease, aPD)患者丘脑各个亚区与其他脑区之间功能连接的差异,并探讨异常功能连接与神经心理学评分之间的关系。方法 对2018年12月-2021年11月就诊于广东省人民医院的进展期帕金森病患者(aPD组)26例和38名健康对照者(Healthy control,HC)组的临床资料收集、神经心理学评估以及静息态功能磁共振扫描,以5个丘脑亚区作为种子点进行功能连接分析,并采用多元线性回归分析方法分析aPD患者认知功能与丘脑亚区异常功能连接的相关性。结果 aPD组左侧双侧腹前部(Ventral anterior,VA)与左侧中央后回、左侧扣带回中部之间的功能连接显著增强; 右侧VA与左侧中央后回、左侧扣带回中部之间的功能连接显著增强。多元回归分析发现,左侧VA与左侧中央后回的功能连接(Functional connectivity,FC)值与色词干扰测试干扰效应(Stroop interfere effects,SIE)呈负相关(β=-0.773,P=0.027),右侧VA与左侧扣带回中部的FC值与Stroop SIE呈正相关(β=0.937,P=0.007); 左侧VA与左侧中央后回的FC值与数字符号转换测试得分呈正相关(β=0.862,P=0.022); 右侧VA与左侧中央后回的FC值与木块图案测试得分呈负相关(β=-0.891,P=0.025)。结论 aPD患者丘脑VA与左侧中央后回、左侧扣带回中部存在功能连接增强; 双侧腹前丘脑功能改变可能与帕金森病运动症状相关; aPD患者右侧腹前丘脑与扣带回皮质功能变化可能引起PD患者认知功能障碍,特别是注意力和执行功能的障碍。
Abstract:
ObjectiveTo explore the differences in functional connectivity(FC)between thalamus subregions and other brain regions, and the association between abnormal FC and cognitive function.Methods 26 patients with advanced PD(aPD)who were reffered to neurology outpatient clinics of Guangdong General Hospital from December 2018 to November 2021, and 38 healthy controls(HC)were enrolled. Demographic and clinical data including motor, cognitive and emotional function were collected. Functional magnetic resonance(fMRI)scanning was performed in aPD and control groups, and 5 thalamus subregions were selected as seeds for FC analysis. Using multiple linear regression analysis, the association between cognitive function and abnormal FC values in thalamic nuclei of aPD patients was analyzed.Results The functional connection between the left Ventral Anterior(VA)nuclei of thalamus and the left posterior central gyrus, as well as the connection between the left VA and the left middle cingulate gyrus were significantly increased in aPD group. The functional connection between the right VA and the left posterior central gyrus, as well as the left middle cingulate gyrus were significantly increased. Multiple regression analysis showed that values of FC between the left VA and the left posterior central gyrus were negatively correlated with Stroop interfere effects(SIE)(β=-0.773, P=0.027), while values of FC between the right VA and the left middle cingulate gyrus were positively correlated with SIE(β=0.937, P=0.007). The values of FC between the left VA and the left posterior central gyrus were positively correlated with the symbol digit modalities test score(β=0.862, P=0.022). The values of FC between the right VA and the left posterior central gyrus were negatively correlated with block design test scores(β=-0.891, P=0.025).Conclusion Patients with aPD have higher values of FC between VA and the left posterior central gyrus, as well as the left middle cingulate gyrus. Functional changes in bilateral VA thalamus domains may be related to motor symptoms of Parkinson's disease. Patients with aPD may experience changes in the functional connection between the right anterior ventral thalamus and cingulate cortex, which may cause cognitive dysfunction in PD patients, especially in attention and executive function.

参考文献/References:

[1] Tolosa E, Wenning G, Poewe W. The diagnosis of Parkinson's disease[J]. Lancet Neurol, 2006, 5(1): 75-86.
[2] Antonini A, Stoessl AJ, Kleinman LS, et al. Developing consensus among movement disorder specialists on clinical indicators for identification and management of advanced Parkinson's disease: a multi-country Delphi-panel approach[J]. Curr Med Res Opin, 2018, 34(12): 2063-2073.
[3] Akram H, Wu C, Hyam J, et al. l-Dopa responsiveness is associated with distinctive connectivity patterns in advanced Parkinson's disease[J]. Mov Disord, 2017, 32(6): 874-883.
[4] Badea L, Onu M, Wu T, et al. Exploring the reproducibility of functional connectivity alterations in Parkinson's disease[J]. PLoS One, 2017, 12(11): e0188196.
[5] Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis[J]. Behav Brain Sci, 1999, 22(3): 425-444; discussion 444-89.
[6] Chen FX, Kang DZ, Chen FY, et al. Gray matter atrophy associated with mild cognitive impairment in Parkinson's disease[J]. Neurosci Lett, 2016, 617(1): 160-165.
[7] Schulz J, Pagano G, Fern ndez BJ, et al. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson's disease[J]. Brain, 2018, 141(5): 1501-1516.
[8] Aggleton JP, O'mara SM, Vann SD, et al. Hippocampal-anterior thalamic pathways for memory: uncovering a network of direct and indirect actions[J]. Eur J Neurosci, 2010, 31(12): 2292-2307.
[9] 中国帕金森病的诊断标准(2016版)[J].中华神经科杂志,2016(4):268-27.
[10] Bordes S, Werner C, Mathkour M, et al. Arterial supply of the thalamus: a comprehensive review[J]. World Neurosurg, 2020, 137(1): 310-318.
[11] Alexander GE, Delong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex[J]. Annu Rev Neurosci, 1986, 9(1): 357-381.
[12] Owens-Walton C, Jakabek D, Power BD, et al. Increased functional connectivity of thalamic subdivisions in patients with Parkinson's disease[J]. PLoS One, 2019, 14(9): e0222002.
[13] Kassubek J, Juengling FD, Hellwig B, et al. Thalamic gray matter changes in unilateral Parkinsonian resting tremor: a voxel-based morphometric analysis of 3-dimensional magnetic resonance imaging[J]. Neurosci Lett, 2002, 323(1): 29-32.
[14] Gross RE, Jones EG, Dostrovsky JO, et al. Histological analysis of the location of effective thalamic stimulation for tremor. Case report[J]. J Neurosurg, 2004, 100(3): 547-552.
[15] Johnson W, Bouchard TJ, Segal NL, et al. The stroop Color-Word test:genetic and environmental influences; reading,mental ability,and personality correlates[J]. J Educ Psychol, 2003, 95(1): 58-65.
[16] Langdon DW, Amato MP, Boringa J, et al. Recommendations for a brief international cognitive assessment for multiple sclerosis(BICAMS)[J]. Mult Scler, 2012, 18(6): 891-898.
[17] Chiaravalloti ND, Stojanovic-Radic J, Deluca J. The role of speed versus working memory in predicting learning new information in multiple sclerosis[J]. J Clin Exp Neuropsychol, 2013, 35(2): 180-191.
[18] Li M, He J, Liu X, et al. Structural and functional thalamic changes in Parkinson's disease with mild cognitive impairment[J]. Journal of Magnetic Resonance Imaging, 2020,52(4):1207-1215.
[19] David E, Gold G, Herrmann FR, et al. Lewy body densities in the entorhinal and anterior cingulate cortex predict cognitive deficits in Parkinson's disease[J]. Acta Neuropathol, 2003, 106(1): 83-88.
[20] Lewis S JG, Shine JM, Duffy S, et al. Anterior cingulate integrity: Executive and neuropsychiatric features in Parkinson's disease[J]. Movement Disorders, 2012, 27(10): 1262-7.
[21] Disbrow EA, Carmichael O, He J, et al. Resting state functional connectivity is associated with cognitive dysfunction in non-demented People with Parkinson's disease[J]. J Parkinsons Dis, 2014, 4(3): 453-465.
[22] Gorges M, M ller HP, Lul D, et al. To rise and to fall: functional connectivity in cognitively normal and cognitively impaired patients with Parkinson's disease[J]. Neurobiol Aging, 2015, 36(4): 1727-1735.
[23] Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis[J]. Neuroimage, 2008, 42(3): 1178-1184.
[24] Matsui H, Nishinaka K, Oda M, et al. Dementia in Parkinson's disease: diffusion tensor imaging[J]. Acta Neurol Scand, 2007, 116(3): 177-181.
[25] Summerfield C, G mez-Ans n B, Tolosa E, et al. Dementia in Parkinson's disease[J]. JAMA Neurol, 2002, 59(9): 1415-1420.
[26] Zhan ZW, Lin LZ, Yu EH, et al. Abnormal resting-state functional connectivity in posterior cingulate cortex of Parkinson's disease with mild cognitive impairment and dementia[J]. CNS Neurosci Ther, 2018, 24(10): 897-905.
[27] Kropf E, Syan SK, Minuzzi L, et al. From anatomy to function: the role of the somatosensory cortex in emotional regulation[J]. Rev Bras Psiquiatr, 2019, 41(3): 261-269.
[28] Conte A, Khan N, Defazio G, et al. Pathophysiology of somatosensory abnormalities in Parkinson's disease[J]. Nat Rev Neurol, 2013, 9(12): 687-697.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(No.82071419); 广州市科技重点研发计划项目(No.202206010086); 高水平医院建设项目(No.DFJH201907); 广东省杰出青年医学人才项目(No.KJ012019442)
更新日期/Last Update: 2023-03-20