[1]安惠娟,张亚恒,齐俊丽.单细胞RNA测序探索多发性硬化患者外周血中免疫细胞特征[J].卒中与神经疾病杂志,2023,30(01):42-48,54.[doi:10.3969/j.issn.1007-0478.2023.01.007]
 An Huijuan,Zhang Yaheng,Qi Junli..An exploration of immune cell signatures in peripheral blood of multiple sclerosis patients by single-cell RNA sequencing[J].Stroke and Nervous Diseases,2023,30(01):42-48,54.[doi:10.3969/j.issn.1007-0478.2023.01.007]
点击复制

单细胞RNA测序探索多发性硬化患者外周血中免疫细胞特征()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第30卷
期数:
2023年01期
页码:
42-48,54
栏目:
论著
出版日期:
2023-03-20

文章信息/Info

Title:
An exploration of immune cell signatures in peripheral blood of multiple sclerosis patients by single-cell RNA sequencing
文章编号:
1007-0478(2023)01-0042-08
作者:
安惠娟张亚恒齐俊丽
471003 河南省洛阳市河南科技大学第二附属医院神经内科[安惠娟 张亚恒(通信作者)齐俊丽]
Author(s):
An HuijuanZhang YahengQi Junli.
Department of Neurology, the Second Affiliated Hospital and College of Clinical Medicine of Henan University of Science, Luoyang Henan 471003
关键词:
多发性硬化 单细胞 免疫细胞 血液
Keywords:
Multiple sclerosis Single cell Immune cell Blood
分类号:
R744.5+1
DOI:
10.3969/j.issn.1007-0478.2023.01.007
文献标志码:
A
摘要:
目的 探讨多发性硬化(Multiple sclerosis,MS)患者外周血中免疫细胞特征。方法 通过GEO(Gene expression omnibus)数据库下载单细胞数据,利用seurat标准程序对数据进行质控、降维及分群后根据临床数据将各类细胞再次分为MS组和健康对照(Health Identify,HI)组,此后对细胞进行类型间和组间的比较分析; 在对细胞类型间的转录组变化分析后对差异表达基因进行富集分析明确各细胞类型的功能; 进一步对细胞组间基因差异最显著和最多的细胞类型进行亚群分析,比较其上调亚群和下调亚群的转录组变化并进行富集分析。结果 通过对数据标准化和过滤后共获得71592个细胞,经过线性和非线性降维分析后获得21个边界清晰的细胞群,对细胞群注释后将其分为6种细胞类型,包括CD4+T细胞、CD8+T细胞、B细胞、自然杀伤细胞、初始CD8+T细胞、单核细胞-巨噬细胞; 转录组的富集分析显示这6种细胞主要与T细胞的活化和受体的激活信号通路相关; 亚群的转录组分析显示CD8+T细胞的上调亚群主要与先天性免疫、适应性免疫和NK细胞抑制有关,而CD4+T的亚群主要富集在Ras信号通路相关的T细胞活化过程,并且其亚群中还发现CCL5基因的高表达。结论 MS血液中的基因表达存在明显的细胞类型特异性,并且还发现CD8+T细胞亚群中的高表达基因与NK细胞抑制的通路有关,而在CD4+T细胞的亚群中发现了CCL5基因的早期高表达。
Abstract:
ObjectiveTo investigate immune cell signatures in peripheral blood of patients with multiple sclerosis(MS).Methods The single cell data were downloaded from Gene Expression Omnibus(GEO)database. Standard Seurat workflow was performed for quality control, dimensionality reduction and clustering. Then, each cell type was divided into MS orhealthy control groups based on clinical data. Comparisons among cells types, as well as comparison between groups, were conducted. Transcriptomic analysis of changes among different cell types was performed to disclose genes with significantly different expression levels. The specific function of each cell type was identified by enrichment analysis. Subgroup analysis for cell types with the most significant gene expression differences was also performed. Transcriptomo change comparison between up-regulated and down-regulated subgroups, as well as enrichment analysis, was conducted.Results Total 71592 cells were acquired by data standardization and filteration. Those cells were divided into 21 cell clusters through linear and nonlinear dimensionality reduction. The clusters were annotated into six cell types including CD4+T cells, CD8+T cells, B cells, natural killer(NK)cells, na ve CD8+T cells, and mononuclear macrophages. The enrichment anaysis of transcriptomo showed that the six cell typesmostly correlated with activation and receptor-mediated activating pathways of T cells. And the enrichment analysis of transcriptomo in subgroups demonstrated that up-regulation of CD8+T cell subgroups was related to innate immunity, adaptive immunity and inhibition of NK cells. However, the enrichment of CD4+T cell subgroups occurred in Ras associated activating process of T cells. And high expression of CCL5 gene was detected in these subgroups.Conclusion We found the existence of cell type specificity for different gene expression in the blood of MS patients. We also found high expression of genes in CD8+T subgroups was related to inhibition of NK cells, and CCL5 gene was highly expressed in the early stage in CD4+T cell subgroups.

参考文献/References:

[1] Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis[J]. N Engl J Med, 2018, 378(2): 169-180.
[2] Dendrou CA, Fugger L, Friese M. Immunopathology of multiple sclerosis[J]. Nat Rev Immunol, 2015, 15(9): 545-558.
[3] Polman CH, O'connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis[J]. N Engl J Med, 2006, 354(9): 899-910.
[4] Saidha S, Eckstein C, Calabresi PA. New and emerging disease modifying therapies for multiple sclerosis[J]. Ann N Y Acad Sci, 2012, 1247(1): 117-137.
[5] Schmitt E, Klein M, Bopp T. Th9 cells, new players in adaptive immunity[J]. Trends Immunol, 2014, 35(2): 61-68.
[6] Kaplan MH, Hufford MM, Olson MR. The development and in vivo function of T helper 9 cells[J]. Nat Rev Immunol, 2015, 15(5): 295-307.
[7] Straus DB, Weiss A. Genetic evidence for the involvement of the lck tyrosine kinase in signal transduction through the T cell antigen receptor[J]. Cell, 1992, 70(4): 585-593.
[8] Krensky AM, Sanchez-Madrid F, Robbins E, et al. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions[J]. J Immunol, 1983, 131(2): 611-616.
[9] Matsui T, Connolly JE, Michnevitz M, et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions[J]. J Immunol, 2009, 182(11): 6815-6823.
[10] Binder C, Cvetkovski F, Sellberg F, et al.CD2 immunobiology[Z],2020:1090.
[11] Bachelet I, Munitz A, Moretta A, et al. The inhibitory receptor IRp60(CD300a)is expressed and functional on human mast cells[J]. J Immunol, 2005, 175(12): 7989-7995.
[12] Lazetic S, Chang C, Houchins JP, et al. Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits[J]. J Immunol, 1996, 157(11): 4741-4745.
[13] Kurdi AT, Bassil R, Olah M, et al.Tiam1/Rac1 complex controls Il17a transcription and autoimmunity[Z],2016:13048.
[14] Chardin P, Camonis JH, Gale NW, et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2[J]. Science, 1993, 260(5112): 1338-1343.
[15] Modzelewska K, Elgort MG, Huang J, et al. An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development[J]. Mol Cell Biol, 2007, 27(10): 3695-3707.
[16] Furlan R, Rovaris M, Martinelli BF, et al. Immunological patterns identifying disease course and evolution in multiple sclerosis patients[J]. J Neuroimmunol, 2005, 165(1/2): 192-200.
[17] Weber MS, Hemmer B. Cooperation of B cells and T cells in the pathogenesis of multiple sclerosis[J]. Results Probl Cell Differ, 2010, 51(1): 115-126.
[18] Yu X, Graner M, Kennedy P, et al.The role of antibodies in the pathogenesis of multiple sclerosis[Z],2020:533388.
[19] Ziemssen T, Ziemssen F. The role of the humoral immune system in multiple sclerosis(MS)and its animal model experimental autoimmune encephalomyelitis(EAE)[J]. Autoimmun Rev, 2005, 4(7):460-467.
[20] Caligiuri M. Human natural killer cells[J]. Blood, 2008, 112(3): 461-469.
[21] Orr MT, Lanier LL. Natural killer cell education and tolerance[J]. Cell, 2010, 142(6): 847-856.
[22] Bennett TJ, Udupa V, Turner SJ. Running to stand still: naive CD8(+)T cells actively maintain a program of quiescence[J]. Int J Mol Sci, 2020, 21(24): 9773.
[23] Braud VM, Allan DS, O, et al. HLA-E binds to natural killer cell receptors CD94/NKG2A,B and C[J]. Nature, 1998, 391(6669): 795-799.
[24] Lee N, Llano M, Carretero M, et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A[J]. Proc Natl Acad Sci U S A, 1998, 95(9): 5199-5204.
[25] Borrego F, Ulbrecht M, Weiss EH, et al. Recognition of human histocompatibility leukocyte antigen(HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis[J]. J Exp Med, 1998, 187(5): 813-818.
[26] Miller JD, Weber DA, Ibegbu C, et al. Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2[J]. J Immunol, 2003, 171(3): 1369-1375.
[27] Houchins JP, Lanier LL, Niemi EC, et al. Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C[J]. J Immunol, 1997, 158(8): 3603-3609.
[28] Carretero M, Cantoni C, Bell n T, et al. The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules[J]. Eur J Immunol, 1997, 27(2): 563-567.
[29] Gornalusse GG, Hirata RK, Funk SE, et al. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells[J]. Nat Biotechnol, 2017, 35(8): 765-772.
[30] Mor A, Philips MR, Pillinger MH. The role of Ras signaling in lupus T lymphocytes: biology and pathogenesis[J]. Clin Immunol, 2007, 125(3): 215-223.
[31] Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases[J]. Open Rheumatol J, 2012, 6(1): 259-272.
[32] Bonfiglio T, Olivero G, Merega E, et al. Prophylactic versus Therapeutic Fingolimod: Restoration of Presynaptic Defects in Mice Suffering from Experimental Autoimmune Encephalomyelitis[J]. PLoS One, 2017, 12(1): e0170825.
[33] Pittaluga A.CCL5-Glutamate Cross-Talk in Astrocyte-Neuron communication in multiple sclerosis[Z],2017:1079.

备注/Memo

备注/Memo:
基金项目:河南省医学科技攻关计划(联合共建)项目(LHGJ20200598)
更新日期/Last Update: 2023-03-20