参考文献/References:
[1] 顾丽,余年,狄晴.癫痫发作后状态及其临床意义[J].中华神经科杂志,2022,55(1):65-70.
[2] Jamy R, Kaur M, Pizarro D, et al. Practice trends and the outcome of neuromodulation therapies in epilepsy: a single-center study[J]. Epilepsia Open, 2019, 4(3): 493-497.
[3] 邓劼,方方,王晓慧,等.早发性癫痫脑病伴暴发-抑制脑电图患儿30例的病因与临床特点分析[J].中华实用儿科临床杂志,2020,35(24):1853-1857.
[4] Cao J, Zhu J, Hu W, et al. Epileptic signal classification with deep EEG features by stacked CNNs[J]. IEEE Trans Cogn Dev Syst, 2019, 12(4): 709-722.
[5] Ozcan AR, Erturk S. Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(11): 2284-2293.
[6] Hu WB, Cao JW, Lai XP, et al. Mean amplitude spectrum based epileptic state classification for seizure prediction using convolutional neural networks[J]. J Ambient Intell Humaniz Comput, 2019, 32(56): 1-11.
[7] Peng P, Xie L, Wei H. A deep fourier neural network for seizure prediction using convolutional neural network and ratios of spectral power[J]. Int J Neural Syst, 2021, 31(8): 2150022.
[8] Mansour RF, Aljehane NO. An optimal segmentation with deep learning based inception network model for intracranial hemorrhage diagnosis[J]. Neural Computing and Applications, 2021, 33(20): 13831-13843.
[9] Zhang W, Li X, Ding Q. Deep residual learning-based fault diagnosis method for rotating machinery[J]. ISA Trans, 2019, 95(1): 295-305.
[10] Li J, Lu K, Huang Z, et al. Transfer independently together: a generalized framework for domain adaptation[J]. IEEE Trans Cybern, 2019, 49(6): 2144-2155.
[11] Deng J, Guo W, Zhao Y, et al. Identification of diatom taxonomy by a combination of region-based full convolutional network, online hard example mining, and shape priors of diatoms[J]. Int J Legal Med, 2021, 135(6): 2519-2530.
[12] Liu X, Wu S, Daif A, et al. Clinical implications of scalp ictal EEG pattern in patients with temporal lobe epilepsy[J]. Clin Neurophysiol, 2019, 130(9): 1604-1610.
[13] Jy Y, Jetté N, Kwon CS, et al. Brief potentially ictal rhythmic discharges and paroxysmal fast activity as scalp electroencephalographic biomarkers of seizure activity and seizure onset zone[J]. Epilepsia, 2021, 62(3): 742-751.
[14] Ananda A, Ngan KH, Karaba(ˇoverg)C, et al. Classification and visualisation of normal and abnormal radiographs; a comparison between eleven convolutional neural network architectures[J]. Sensors(Basel), 2021, 21(16): 5381.
[15] Lu Q, Li S, Yang T, et al. An adaptive hybrid X deep FM based deep Interest network model for click-through rate prediction system[J]. PeerJ Comput Sci, 2021, 7(1): e716.