[1]白夜,王勇,张文进,等.miR-381-3p通过靶向调控TP53表达对大鼠脊髓损伤后修复的作用及其机制研究[J].卒中与神经疾病杂志,2023,30(05):461-473.[doi:10.3969/j.issn.1007-0478.2023.05.007]
 Bai Ye,Wang Yong,Zhang Wenjin,et al.The effect and mechanism of miR-381-3p on the repair of spinal cord injury in rats via the regulation of TP53[J].Stroke and Nervous Diseases,2023,30(05):461-473.[doi:10.3969/j.issn.1007-0478.2023.05.007]
点击复制

miR-381-3p通过靶向调控TP53表达对大鼠脊髓损伤后修复的作用及其机制研究()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第30卷
期数:
2023年05期
页码:
461-473
栏目:
论著
出版日期:
2023-10-20

文章信息/Info

Title:
The effect and mechanism of miR-381-3p on the repair of spinal cord injury in rats via the regulation of TP53
文章编号:
1007-0478(2023)05-0461-13
作者:
白夜王勇张文进许战武陈庆贺
150000 黑龙江省哈尔滨市联勤保障部队第九六二医院骨科[白夜 王勇 张文进(通信作者)许战武 陈庆贺]
Author(s):
Bai Ye Wang Yong Zhang Wenjin et al.
Department of Orthopedics, 962 Hospital of Joint Logistic Support Force, Harbin 150000
关键词:
微小RNA-381-3p 肿瘤抑制蛋白基因 脊髓损伤 氧化和炎症应激 DNA损伤
Keywords:
MicroRNA-381-3p Tumor protein p53 Spinal cord injury Oxidative and inflammatory stress DNA injury
分类号:
R651.2
DOI:
10.3969/j.issn.1007-0478.2023.05.007
文献标志码:
A
摘要:
目的 探讨微小RNA-381-3p(MicroRNA-381-3p,miR-381-3p)对脊髓损伤(Spinal cord injury,SCI)大鼠继发性损伤的修复机制以及其对肿瘤抑制蛋白基因(Tumor protein p53,TP53)表达水平的调控机制。方法 双荧光素酶以及蛋白质免疫共沉淀检测miR-381-3p和TP53的作用; 用改良Allen's重物垂直撞击法复制大鼠SCI模型; 实验动物分为假手术(Sham)组、SCI组、miR-381-3p-mimic(mimic)组、mimic+pc DNA3.1 TP53(mimic+pc)组,每组各10只; mimic组大鼠尾静脉注射miR-318-3p mimic; mimic+pc组大鼠尾静脉注射miR-318-3p mimic和pc DNA3.1 TP53; Sham组和SCI组大鼠尾静脉注射miR-318-3p mimic-NC和pc DNA3.1 TP53-NC; 检测各组大鼠的运动功能评分(Basso beattie bresnahan,BBB)评分; 脱氧核糖核苷酸末端转移酶介导的缺口末端标记试剂盒(Terminal-deoxynucleoitidyl transferase-mediated nick end labeling,TUNEL)检测各组大鼠脊髓组织的细胞凋亡; 超氧化物阴离子二氢乙啶(Dihydroethidium,DHE)荧光探针检测脊髓组织中活性氧(Reactive oxygen species,ROS)自由基的水平; 免疫荧光检测各组大鼠脊髓组织中小胶质细胞的表型转换; 酶联免疫吸附(Enzyme-linked immunosorbent assay,ELISA)检测各组大鼠血清中超氧化物歧化酶(Superoxide dismutase,SOD)、丙二醛(Malondialdehyde,MDA)、白细胞介素-1β(Interleukin-1β,IL-1β),IL-6,IL-4和IL-10的水平; 彗星实验检测各组脊髓组织中的DNA损伤; Western blot实验检测各组大鼠脊髓组织中肿瘤抑制蛋白基因(Tumor protein p53,TP53)、核转录因子(Nuclear factor κB,NF-κB)、磷酸化组蛋白(γ-Histone family 2A variant,γ-H2AX)、B淋巴细胞瘤-2(B cell lymphoma-2,Bcl-2)和Bcl-2相关X蛋白(Bcl2-associated x protein,Bax)水平。结果 双荧光素酶以及蛋白质免疫共沉淀显示miR-381-3p调控TP53的表达水平。与Sham组比较,SCI组、mimic组、mimic+pc组大鼠的BBB评分、血清中SOD的活性、脊髓组织中M2型细胞的比例、Bcl-2的表达水平明显降低,脊髓组织中的细胞凋亡率、ROS的水平,血清中MDA,IL-1β,IL-6,IL-4和IL-10的水平,脊髓组织中M1型细胞的比例、DNA的Olive尾矩、TP53,NF-κB,γH2AX和Bax的表达水平明显升高(P均<0.05); 与SCI组比较,mimic组、mimic+pc组大鼠的BBB评分、血清中SOD的活性以及IL-4和IL-10的水平、脊髓组织中M2型细胞的比例、Bcl-2的表达水平明显升高,脊髓组织中的细胞凋亡率、ROS的水平,血清中MDA,IL-1β,IL-6的水平,脊髓组织中M1型细胞的比例、DNA的Olive尾矩、TP53,NF-κB,γH2AX和Bax的表达水平明显降低(P均<0.05); 与mimic组比较,mimic+pc组大鼠的BBB评分、血清中SOD的活性以及IL-4和IL-10的水平、脊髓组织中M2型细胞的比例、Bcl-2的表达水平明显降低,脊髓组织中的细胞凋亡率、ROS的水平、血清中MDA,IL-1β,IL-6的水平,脊髓组织中M1型细胞的比例、DNA的Olive尾矩、TP53,NF-κB,γH2AX和Bax的表达水平明显升高(P均<0.05)。结论 SCI大鼠模型miR-318-3p的表达水平明显降低,TP53的表达水平明显升高,miR-318-3p靶向TP53的表达水平,过表达miR-318-3p后能明显抑制实验动物脊髓组织中的氧化和炎症应激,减轻细胞的DNA损伤,降低脊髓组织中的细胞凋亡率,缓解动物脊髓组织的病理损伤。
Abstract:
ObjectiveTo investigate the repair mechanism of microRNA-381-3p(miR-381-3p)on secondary injury in spinal cord injury(SCI)rats and its regulatory mechanism on the expression of tumor protein p53(TP53).Methods Double luciferase and protein immunoprecipitation were used to detect the effect of miR-381-3p and TP53. The modified Allen's weight vertical impact method was used to establish the rat SCI model. The experimental animals were divided into the sham operation group(Sham), SCI group, miR-381-3p-mimic(mimic)group, and mimic plus pc DNA3.1 TP53(mimic+pc)group(n=10). Rats in the mimic group were injected with miR-318-3p mimic through the tail vein. Rats in the mimic+pc group were injected with miR-318-3p mimic and pc DNA3.1 TP53. Rats in the Sham group and SCI group were injected with miR-318-3p mimic-NC and pc DNA3.1 TP53-NC via the tail vein. The basso beattie bresnahan(BBB)score of rats in each group was detected. Terminal deoxynucleotidyl transferase-mediated nick end labeling(TUNEL)was used to detect apoptosis in spinal cord tissue. Dihydroethidium(DHE)was used to detect the content of reactive oxygen species(ROS). Immunofluorescence was used to detect the morphological transformation of microglia in spinal cord tissue. Enzyme-linked immunosorbent assay(ELISA)was used to detect the contents of superoxide dismutase(SOD), malondialdehyde(MDA), interleukin-1β(IL-1β), IL-6, IL-4 and IL-10 in the serum of rats in each group. A comet assay was used to detect DNA injury in spinal cord tissue. Western blotting was used to detect the expression of TP53, NF-κB, γ-histone family 2A variant(γ-H2AX), B lymphocyte tumor-2(Bcl-2)and Bcl-2-associated X protein(Bax)in spinal cord tissue.Results The results of double luciferase and protein immunoprecipitation assays showed that miR-381-3p regulated the expression of TP53. The BBB score, SOD activity in serum, proportion of M2 cells in spinal cord tissue, and expression of Bcl-2 in spinal cord tissue were significantly decreased in the SCI group, mimic group and mimic+pc group compared with the sham group, while the apoptosis rate in spinal cord tissue, ROS content in spinal cord tissue, MDA, IL-1β, IL-6, IL-4 and IL-10 contents in serum, the proportion of M1 cells in spinal cord, Olive tail moment of DNA in spinal cord, and expression of TP53, NF-κB, γH2AX and Bax in spinal cord were significantly increased. Compared with the SCI group, the BBB score, the activity of SOD, the contents of IL-4 and IL-10 in serum, the proportion of M2 cells in spinal cord tissue, and the expression of Bcl-2 in spinal cord tissue were significantly increased in the mimic group and mimic+pc group, while the apoptotic rate in spinal cord tissue, the content of ROS in spinal cord tissue, the contents of MDA, IL-1β, IL-6 in serum, the proportion of M1 cells in spinal cord, the Olive tail moment of DNA in spinal cord, and the expression of TP53, NF-κB, γH2AX and Bax in spinal cord were significantly decreased. Compared with the mimic group, the BBB score, the activity of SOD, the contents of IL-4 and IL-10 in serum, the proportion of M2 cells in spinal cord tissue, and the expression of Bcl-2 in spinal cord tissue were significantly decreased in the mimic+pc group, while the apoptotic rate in spinal cord tissue and the content of ROS in spinal cord tissue, the contents of MDA, IL-1β, IL-6 in serum, the proportion of M1 cells in spinal cord, the Olive tail moment of DNA in spinal cord, and the levels of TP53, NF-κB, γH2AX and Bax in the spinal cord were significantly increased, and the difference was statistically significant(all P<0.05).Conclusion In SCI rats, the expression of miR-318-3p decreased significantly, while the expression of TP53 increased significantly. miR-318-3p targeted TP53 expression. Overexpression of miR-318-3p significantly inhibited oxidative and inflammatory stress in spinal cord tissue, reduced cell DNA injury, reduced the apoptosis rate in spinal cord tissue, and alleviated pathological injury in spinal cord tissue.

参考文献/References:

[1] Xie CN,Wang YH,Wang JF,et al.Perlecan improves blood spinal cord barrier repair through the integrin β1/ROCK/MLC pathway after spinal cord injury[J].Mol Neurobiol,2023,60(1):51-67.
[2] Chen KY,Lu CS,Pang CY,et al.Equilibrative nucleoside transporter 1 is a target to modulate neuroinflammation and improve functional recovery in mice with spinal cord injury[J].Mol Neurobiol,2023,60(1):369-381.
[3] Jin C,Zhu R,Wang ZW,et al.Dynamic changes in mechanical properties of the adult rat spinal cord after injury[J].Acta Biomater,2022,155(1):436-448.
[4] Myatich A,Haque A,Sole C,et al.Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury[J].Neural Regeneration Research,2023,18(5):940-946.
[5] Li WY,Deng LX,Zhai FG,et al.Chx10+V2a interneurons in spinal motor regulation and spinal cord injury[J].Neural Regeneration Research,2023,18(5):933-939.
[6] Jia X,Huang G,Wang S,et al.Extracellular vesicles derived from mesenchymal stem cells containing microRNA-381 protect against spinal cord injury in a rat model via the BRD4/WNT5A axis[J].Bone Joint Res,2021,10(5):328-339.
[7] Yang T,Zhao S,Sun N,et al.Network pharmacology and in vivo studies reveal the pharmacological effects and molecular mechanisms of celastrol against acute hepatic injury induced by LPS[J].Int Immunopharmacol,2023,17(2):109898-109909.
[8] Zhang Z,Sui RB,Ge LL,et al.Moxibustion exhibits therapeutic effects on spinal cord injury via modulating microbiota dysbiosis and macrophage polarization[J].Aging(Albany NY),2022,14(14):5800-5811.
[9] Yang R,Shi L,Si H,et al.Gallic acid improves comorbid chronic pain and depression behaviors by inhibiting P2X7 receptor-mediated ferroptosis in the spinal cord of rats[J].ACS Chem Neurosci,2023,14(4):667-676.
[10] Xu AH,Yang Y,Shao Y,et al.Poly(ADP-ribose)polymerase family member 14 promotes functional recovery after spinal cord injury through regulating microglia M1/M2 polarization via STAT1/6 pathway[J].Neural Regeneration Research,2023,18(8):1809-1817.
[11] Wang L,Song ZW,Zou HJ,et al.CircRNA3616 knockdown attenuates inflammation and apoptosis in spinal cord injury by inhibiting TLR4/NF-κB activity via sponging miR-137[J].Mol Cell Biochem,2023,478(2):329-341.
[12] Zhao JY,Sheng XL,Li CJ,et al.Metformin promotes angiogenesis and functional recovery in aged mice after spinal cord injury by adenosine monophosphate-activated protein kinase/endothelial nitric oxide synthase pathway[J].Neural Regeneration Research,2023,18(7):1553-1562.
[13] Gong LL,Gu Y,Han XX,et al.Spatiotemporal dynamics of the molecular expression pattern and intercellular interactions in the glial scar response to spinal cord injury[J].Neurosci Bull,2023,39(2):213-244.
[14] Jiang T,Qin T,Gao P,et al.SIRT1 attenuates blood-spinal cord barrier disruption after spinal cord injury by deacetylating p66Shc[J].Redox Biol,2023,60(4):102615-102631.
[15] Rodrigo Albors A,Singer GA,Llorens-Bobadilla E,et al.An ependymal cell census identifies heterogeneous and ongoing cell maturation in the adult mouse spinal cord that changes dynamically on injury[J].Dev Cell,2023,58(3):239-255.e10.
[16] Zhou ZL,Xie H,Tian XB,et al.Microglial depletion impairs glial scar formation and aggravates inflammation partly by inhibiting STAT3 phosphorylation in astrocytes after spinal cord injury[J].Neural Regeneration Research,2023,18(6):1325-1331.
[17] Burke DA,Morehouse JR,Saraswat Ohri S,et al.Unintentional effects from housing enhancement resulting in functional improvement in spinal cord-injured mice[J].Neurotrauma Rep,2023,4(1):71-81.
[18] Chen F,Wang D,Jiang Y,et al.Dexmedetomidine postconditioning alleviates spinal cord ischemia-reperfusion injury in rats via inhibiting neutrophil infiltration,microglia activation,reactive gliosis and CXCL13/CXCR5 axis activation[J].Int J Neurosci,2023,133(1):1-12.
[19] Li JZ,Fan BY,Sun T,et al.Bioinformatics analysis of ferroptosis in spinal cord injury[J].Neural Regeneration Research,2023,18(3):626-633.
[20] Tong K,Li SM,Chen GL,et al.Inhibition of neural stem cell necroptosis mediated by RIPK1/MLKL promotes functional recovery after SCI[J].Mol Neurobiol,2023,60(4):2135-2149.
[21] Al-Sammarraie N,Mahmood M,Ray SK.Neuroprotective role of noggin in spinal cord injury[J].Neural Regeneration Research,2023,18(3):492-496.
[22] Che Y,He J,Li X,et al.Overexpression of microRNA-381-3p ameliorates hypoxia/ischemia-induced neuronal damage and microglial inflammation via regulating the C-C chemokine receptor type 2/nuclear transcription factor-kappa B axis[J].Bioengineered,2022,13(3):6839-6855.
[23] Deng Y,Cai L,Wang F,et al.Upregulated microRNA-381-5p strengthens the effect of dexmedetomidine preconditioning to protect against myocardial ischemia-reperfusion injury in mouse models by inhibiting CHI3L1[J].Int Immunopharmacol,2020,92(3):107326-107334.
[24] Xue Y,Xu T,Jiang W.Dexmedetomidine protects PC12 cells from ropivacaine injury through miR-381/LRRC4/SDF-1/CXCR4 signaling pathway[J].Regen Ther,2020,14(5):322-329.
[25] He ZL,Du JQ,Zhang Y,et al.Kruppel-like factor 2 contributes to blood-spinal cord barrier integrity and functional recovery from spinal cord injury by augmenting autophagic flux[J].Theranostics,2023,13(2):849-866.
[26] Zhang G,Cui XL,Zhang L,et al.Uncovering the genetic links of SARS-CoV-2 infections on heart failure co-morbidity by a systems biology approach[J].ESC Heart Fail,2022,9(5):2937-2954.
[27] Liu JF,Zhang C,Liu S,et al.Tanshinone IIA promotes apoptosis by downregulating BCL2 and upregulating TP53 in triple-negative breast cancer[J].Naunyn Schmiedebergs Arch Pharmacol,2023,396(2):365-374.
[28] Aschtgen MS,Fragkoulis K,Sanz G,et al.Enterobacteria impair host p53 tumor suppressor activity through mRNA destabilization[J].Oncogene,2022,41(15):2173-2186.

更新日期/Last Update: 2023-10-20