参考文献/References:
[1] Feldman E,Goutman S,Petri S,et al.Amyotrophic lateral sclerosis[J].Lancet,2022,400(10360):1363-1380.
[2] Khalil B,Liévens JC.Mitochondrial quality control in amyotrophic lateral sclerosis:towards a common pathway?[J].Neural Regen Res,2017,12(7):1052-1061.
[3] Ling SC,Polymenidou M,Cleveland DW.Converging mechanisms in ALS and FTD:disrupted RNA and protein homeostasis[J].Neuron,2013,79(3):416-438.
[4] Parobkova E,Matej R.Amyotrophic lateral sclerosis and frontotemporal lobar degenerations: similarities in genetic background[J].Diagnostics(Basel),2021,11(3):509.
[5] Boeve BF,Boxer AL,Kumfor F,et al.Advances and controversies in frontotemporal dementia: diagnosis, biomarkers, and therapeutic considerations[J].Lancet Neurol,2022,21(3):258-272.
[6] Sieben A,Van Langenhove T,Engelborghs S,et al.The genetics and neuropathology of frontotemporal lobar degeneration[J].Acta Neuropathol,2012,124(3):353-372.
[7] Kirola L,Mukherjee A,Mutsuddi M.Recent updates on the genetics of amyotrophic lateral sclerosis and frontotemporal dementia[J].Mol Neurobiol,2022,59(9):5673-5694.
[8] Wood A,Gurfinkel Y,Polain N,et al.Molecular mechanisms underlying TDP-43 pathology in cellular and animal models of ALS and FTLD[J].Int J Mol Sci,2021,22(9):4705.
[9] Imai Y,Meng HR,Shiba-Fukushima K,et al.Twin CHCH proteins,CHCHD2,and CHCHD10:key molecules of parkinson's disease, amyotrophic lateral sclerosis, and frontotemporal dementia[J].Int J Mol Sci,2019,20(4):908.
[10] Paß T,Wiesner RJ,Pla-Martín D.Selective neuron vulnerability in common and rare diseases-mitochondria in the focus[J].Front Mol Biosci,2021,8:676187.
[11] Afifi AK,Aleu FP,Goodgold J,et al.Ultrastructure of atrophic muscle in amyotrophic lateral sclerosis[J].Neurology,1966,16(5):475-481.
[12] Stribl C,Samara A,Trümbach D,et al.Mitochondrial dysfunction and decrease in body weight of a transgenic knock-in mouse model for TDP-43[J].J Biol Chem,2014,289(15):10769-10784.
[13] Nakaya TDH,Maragkakis M.Amyotrophic lateral sclerosis associated FUS mutation shortens mitochondria and induces neurotoxicity[J].Sci Rep,2018,8(1):15575.
[14] Dafinca R,Barbagallo P,Talbot K.The role of mitochondrial dysfunction and ER stress in TDP-43 and C9ORF72 ALS[J].Front Cell Neurosci,2021,15:653688.
[15] Markovinovic A,Greig J,Martín-Guerrero SM,et al.Endoplasmic reticulum-mitochondria signaling in neurons and neurodegenerative diseases[J].J Cell Sci,2022,135(3):jcs248534.
[16] Ou SH,Wu F,Harrich D,et al.Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs[J].J Virol,1995,69(6):3584-3596.
[17] Strong MJ,Volkening K,Hammond R,et al.TDP43 is a human low molecular weight neurofilament(hNFL)mRNA-binding protein[J].Mol Cell Neurosci,2007,35(2):320-327.
[18] Rao PPN,Shakeri A,Zhao YS,et al.Strategies in the design and development of(TAR)DNA-binding protein 43(TDP-43)binding ligands[J].Eur J Med Chem,2021,225:113753.
[19] Liao YZ,Ma J,Dou JZ.The role of TDP-43 in neurodegenerative disease[J].Mol Neurobiol,2022,59(7):4223-4241.
[20] Winton MJ,Igaz LM,Wong MM,et al.Disturbance of nuclear and cytoplasmic TAR DNA-binding protein(TDP-43)induces disease-like redistribution, sequestration, and aggregate formation[J].J Biol Chem,2008,283(19):13302-13309.
[21] Kabashi E,Valdmanis PN,Dion P,et al.TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis[J].Nat Genet,2008,40(5):572-574.
[22] Sreedharan J,Blair IP,Tripathi VB,et al.TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis[J].Science,2008,319(5870):1668-1672.
[23] Van Deerlin VM,Leverenz JB,Bekris LM,et al.TARDBP mutations in amyotrophic lateral sclerosis with TDP-43 neuropathology: a genetic and histopathological analysis[J].Lancet Neurol,2008,7(5):409-416.
[24] Arai T,Hasegawa M,Akiyama H,et al.TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J].Biochem Biophys Res Commun,2006,351(3):602-611.
[25] Neumann M,Sampathu DM,Kwong LK,et al.Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J].Science,2006,314(5796):130-133.
[26] Janssens J,Wils H,Kleinberger G,et al.Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice[J].Mol Neurobiol,2013,48(1):22-35.
[27] Walker AK,Tripathy K,Restrepo CR,et al.An insoluble frontotemporal lobar degeneration-associated TDP-43 C-terminal fragment causes neurodegeneration and hippocampus pathology in transgenic mice[J].Hum Mol Genet,2015,24(25):7241-7254.
[28] Hong K,Li Y,Duan WS,et al.Full-length TDP-43 and its C-terminal fragments activate mitophagy in NSC34 cell line[J].Neurosci Lett,2012,530(2):144-149.
[29] Wang P,Deng JW,Dong J,et al.TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response[J].PLoS Genet,2019,15(5):e1007947.
[30] Wang WZ,Li L,Lin WL,et al.The ALS disease-associated mutant TDP-43 impairs mitochondrial dynamics and function in motor neurons[J].Hum Mol Genet,2013,22(23):4706-4719.
[31] Wang WZ,Wang LW,Lu JJ,et al.The inhibition of TDP-43 mitochondrial localization blocks its neuronal toxicity[J].Nat Med,2016,22(8):869-878.
[32] Xu YF,Gendron TF,Zhang YJ,et al.Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice[J].J Neurosci,2010,30(32):10851-10859.
[33] Khalil B,Cabirol-Pol MJ,Miguel L,et al.Enhancing mitofusin/Marf ameliorates neuromuscular dysfunction in drosophila models of TDP-43 proteinopathies[J].Neurobiol Aging,2017,54:71-83.
[34] Yu CH,Davidson S,Harapas CR,et al.TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/Sting in ALS[J].Cell,2020,183(3):636-649.e18.
[35] Swarup V,Phaneuf D,Dupré N,et al.Deregulation of TDP-43 in amyotrophic lateral sclerosis triggers nuclear factor κB-mediated pathogenic pathways[J].J Exp Med,2011,208(12):2429-2447.
[36] Onesto E,Colombrita C,Gumina V,et al.Gene-specific mitochondria dysfunctions in human TARDBP and C9ORF72 fibroblasts[J].Acta Neuropathol Commun,2016,4(1):47.
[37] Zuo XX,Zhou J,Li YM,et al.TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS[J].Nat Struct Mol Biol,2021,28(2):132-142.
[38] Neel DV,Basu H,Gunner G,et al.Gasdermin-E mediates mitochondrial damage in axons and neurodegeneration[J].Neuron,2023,111(8):1222-1240.e9.
[39] Stoica R,De Vos KJ,Paillusson S,et al.ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43[J].Nat Commun,2014,5:3996.
[40] Bravo-Sagua R,Parra V,López-Crisosto C,et al.Calcium transport and signaling in mitochondria[J].Compr Physiol,2017,7(2):623-634.
[41] Aman P,Panagopoulos I,Lassen C,et al.Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS[J].Genomics,1996,37(1):1-8.
[42] Prasad DD,Ouchida M,Lee L,et al.TLS/FUS fusion domain of TLS/FUS-erg chimeric protein resulting from the t(16; 21)chromosomal translocation in human myeloid leukemia functions as a transcriptional activation domain[J].Oncogene,1994,9(12):3717-3729.
[43] Perrotti D,Bonatti S,Trotta R,et al.TLS/FUS, a pro-oncogene involved in multiple chromosomal translocations, is a novel regulator of BCR/ABL-mediated leukemogenesis[J].EMBO J,1998,17(15):4442-4455.
[44] Zinszner H,Sok J,Immanuel D,et al.TLS(FUS)binds RNA in vivo and engages in nucleo-cytoplasmic shuttling[J].J Cell Sci,1997,110( Pt 15):1741-1750.
[45] Andersson MK,Ståhlberg A,Arvidsson Y,et al.The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response[J].BMC Cell Biol,2008,9:37.
[46] Kwiatkowski TJJ,Bosco DA,Leclerc AL,et al.Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis[J].Science,2009,323(5918):1205-1208.
[47] Vance C,Rogelj B,Hortobágyi T,et al.Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6[J].Science,2009,323(5918):1208-1211.
[48] Neumann M,Rademakers R,Roeber S,et al.A new subtype of frontotemporal lobar degeneration with FUS pathology[J].Brain,2009,132(Pt 11):2922-2931.
[49] Bosco DA,Lemay N,Ko HK,et al.Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules[J].Hum Mol Genet,2010,19(21):4160-4175.
[50] Dormann D,Rodde R,Edbauer D,et al.ALS-associated fused in sarcoma(FUS)mutations disrupt transportin-mediated nuclear import[J].EMBO J,2010,29(16):2841-2857.
[51] Ito D,Seki M,Tsunoda Y,et al.Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS[J].Ann Neurol,2011,69(1):152-162.
[52] Huang EJ,Zhang JS,Geser F,et al.Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions[J].Brain Pathol,2010,20(6):1069-1076.
[53] Huang C,Tong JB,Bi FF,et al.Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats[J].Hum Mol Genet,2012,21(21):4602-4614.
[54] Deng JW,Yang MX,Chen YB,et al.FUS interacts with HSP60 to promote mitochondrial damage[J].PLoS Genet,2015,11(9):e1005357.
[55] Deng JW,Wang P,Chen XP,et al.FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models[J].Proc Natl Acad Sci U S A,2018,115(41):E9678-E9686.
[56] Stoica R,Paillusson S,Gomez-Suaga P,et al.ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB-PTPIP51 interaction and ER-mitochondria associations[J].EMBO Rep,2016,17(9):1326-1342.
[57] Chen Y,Deng J,Wang P,et al.PINK1 and parkin are genetic modifiers for FUS-induced neurodegeneration[J].Hum Mol Genet,2016,25(23):5059-5068.
[58] Machamer JB,Woolums BM,Fuller GG,et al.FUS causes synaptic hyperexcitability in drosophila dendritic arborization neurons[J].Brain Res,2018,1693(Pt A):55-66.
[59] Renton AE,Majounie E,Waite A,et al.A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD[J].Neuron,2011,72(2):257-268.
[60] DeJesus-Hernandez M,Mackenzie IR,Boeve BF,et al.Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS[J].Neuron,2011,72(2):245-256.
[61] Bieniek KF,Murray ME,Rutherford NJ,et al.Tau pathology in frontotemporal lobar degeneration with C9ORF72 hexanucleotide repeat expansion[J].Acta Neuropathol,2013,125(2):289-302.
[62] Cooper-Knock J,Hewitt C,Highley JR,et al.Clinico-pathological features in amyotrophic lateral sclerosis with expansions in C9ORF72[J].Brain,2012,135(Pt 3):751-764.
[63] Troakes C,Maekawa S,Wijesekera L,et al.An MND/ALS phenotype associated with C9orf72 repeat expansion: abundant p62-positive, TDP-43-negative inclusions in cerebral cortex, hippocampus and cerebellum but without associated cognitive decline[J].Neuropathology,2012,32(5):505-514.
[64] Gami P,Murray C,Schottlaender L,et al.A 30-unit hexanucleotide repeat expansion in C9orf72 induces pathological lesions with dipeptide-repeat proteins and RNA foci, but not TDP-43 inclusions and clinical disease[J].Acta Neuropathol,2015,130(4):599-601.
[65] Beck J,Poulter M,Hensman D,et al.Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population[J].Am J Hum Genet,2013,92(3):345-353.
[66] Van Blitterswijk M,DeJesus-Hernandez M,Niemantsverdriet E,et al.Association between repeat sizes and clinical and pathological characteristics in carriers of C9ORF72 repeat expansions(Xpansize-72): a cross-sectional cohort study[J].The Lancet Neurology,2013,12(10):978-988.
[67] Lopez-Gonzalez R,Lu YB,Gendron TF,et al.Poly(GR)in C9ORF72-Related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons[J].Neuron,2016,92(2):383-391.
[68] Choi SY,Lopez-Gonzalez R,Krishnan G,et al.C9ORF72-ALS/FTD-associated poly(GR)binds Atp5a1 and compromises mitochondrial function in vivo[J].Nat Neurosci,2019,22(6):851-862.
[69] Dafinca R,Scaber J,Ababneh N,et al.C9orf72 hexanucleotide expansions are associated with altered endoplasmic reticulum Calcium homeostasis and stress granule formation in induced pluripotent stem cell-derived neurons from patients with amyotrophic lateral sclerosis and frontotemporal dementia[J].Stem Cells,2016,34(8):2063-2078.
[70] Wang T,Liu HH,Itoh K,et al.C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly[J].Cell Metab,2021,33(3):531-546.e9.
[71] Li SX,Wu ZH,Li Y,et al.Altered MICOS morphology and mitochondrial ion homeostasis contribute to poly(GR)toxicity associated with C9-ALS/FTD[J].Cell Rep,2020,32(5):107989.
[72] Gomez-Suaga P,Mórotz GM,Markovinovic A,et al.Disruption of ER-mitochondria tethering and signalling in C9orf72-associated amyotrophic lateral sclerosis and frontotemporal dementia[J].Aging Cell,2022,21(2):e13549.
[73] Bannwarth S,Ait-El-Mkadem S,Chaussenot A,et al.A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement[J].Brain,2014,137(Pt 8):2329-2345.
[74] Genin EC,Plutino M,Bannwarth S,et al.CHCHD10 mutations promote loss of mitochondrial cristae junctions with impaired mitochondrial genome maintenance and inhibition of apoptosis[J].EMBO Mol Med,2016,8(1):58-72.
[75] Huang XP,Wu BP,Nguyen D,et al.CHCHD2 accumulates in distressed mitochondria and facilitates oligomerization of CHCHD10[J].Hum Mol Genet,2018,27(22):3881-3900.
[76] Zhou W,Ma DR,Sun AX,et al.PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction[J].Hum Mol Genet,2019,28(7):1100-1116.
[77] Burstein SR,Valsecchi F,Kawamata H,et al.In vitro and in vivo studies of the ALS-FTLD protein CHCHD10 reveal novel mitochondrial topology and protein interactions[J].Hum Mol Genet,2018,27(1):160-177.
[78] Woo JAA,Liu T,Trotter C,et al.Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity[J].Nat Commun,2017,8:15558.
[79] Lehmer C,Schludi M,Ransom L,et al.A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS[J].EMBO Mol Med,2018,10(6):e8558.
[80] Straub IR,Janer A,Weraarpachai W,et al.Loss of CHCHD10-CHCHD2 complexes required for respiration underlies the pathogenicity of a CHCHD10 mutation in ALS[J].Hum Mol Genet,2018,27(1):178-189.
[81] Anderson CJ,Bredvik K,Burstein SR,et al.ALS/FTD mutant CHCHD10 mice reveal a tissue-specific toxic gain-of-function and mitochondrial stress response[J].Acta Neuropathol,2019,138(1):103-121.
[82] Mink JW,Blumenschine RJ,Adams DB.Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis[J].Am J Physiol,1981,241(3):R203-R212.
[83] Cabral-Costa JV,Kowaltowski AJ.Neurological disorders and mitochondria[J].Mol Aspects Med,2020,71:100826.