[1]郭敏,李佳,贺冠强,等.基于铁死亡探究Nrf2/HO-1信号通路对帕金森病模型小鼠行为学障碍的调控作用[J].卒中与神经疾病杂志,2024,31(05):448-456.[doi:10.3969/j.issn.1007-0478.2024.05.006]
 Guo Min*,Li Jia,He Guanqiang*,et al.Regulating effects of Nrf2/HO-1 signal pathway on ferroptosis-induced behavioral dysfunction in mouse model of Parkinson's disease[J].Stroke and Nervous Diseases,2024,31(05):448-456.[doi:10.3969/j.issn.1007-0478.2024.05.006]
点击复制

基于铁死亡探究Nrf2/HO-1信号通路对帕金森病模型小鼠行为学障碍的调控作用()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第31卷
期数:
2024年05期
页码:
448-456
栏目:
论著
出版日期:
2024-10-20

文章信息/Info

Title:
Regulating effects of Nrf2/HO-1 signal pathway on ferroptosis-induced behavioral dysfunction in mouse model of Parkinson's disease
文章编号:
1007-0478(2024)05-0448-09
作者:
郭敏李佳贺冠强庞旭阳王旭东朱海生李晓蕾
056001 河北省邯郸市中心医院神经内三科[郭敏 贺冠强 庞旭阳 王旭东 朱海生(通信作者)李晓蕾],检验科(李佳)
Author(s):
Guo Min* Li Jia He Guanqiang* et al.
*Department of Neurology, Handan Central Hospital, Handan Hebei 056001
关键词:
帕金森病 核因子E2相关因子2/血红素加氧酶-1信号通路 氧化应激 铁死亡
Keywords:
Parkinson's disease Nrf2/HO-1 signal pathway Oxidative stress Ferroptosis
分类号:
R742.5
DOI:
10.3969/j.issn.1007-0478.2024.05.006
文献标志码:
A
摘要:
目的 探究核因子E2相关因子2/血红素加氧酶-1(Nuclear factorNF-E2-related factor 2/heme oxygenase,Nrf2/HO-1)信号通路对帕金森病(Parkinson's disease,PD)模型小鼠行为学障碍的改善作用及其调控机制。方法 制备小鼠1-甲基-4-苯基-1,2,3,6-四氢吡啶(1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine,MPTP)模型,并给予Nrf2抑制剂ML385或铁死亡抑制剂Ferrostatin-1; 实验结束后评估各组小鼠行为学表型、多巴胺能神经元损伤程度、氧化应激水平、Nrf2/HO-1信号通路和铁死亡指标表达水平。结果 在MPTP小鼠模型中ML385加剧MPTP组小鼠行为学障碍及酪氨酸羟化酶(Tyrosine hydroxylase,TH)阳性神经元丢失,进一步诱导Fe2+沉积、活性氧(Reactive oxygen species,ROS)合成及丙二醛(Malondialdehyde,MDA)分泌,降低超氧化物歧化酶(Superoxide dismutase,SOD)和谷胱甘肽(Glutathione,GSH)的水平,增加酰基辅酶A合成酶长链家族成员4(Acyl coenzyme a synthetase long chain family member 4,ACSL4)的蛋白表达,并抑制溶质载体家族7成员11(Solute carrier family 7 member 11,SLC7A11)和谷胱甘肽过氧化酶4(Glutathione peroxidase 4,GPX4)的蛋白表达; 给予Ferrostatin-1后可取消上述ML385介导的神经损伤作用,同时不影响Nrf2和HO-1的蛋白表达水平。结论 Nrf2/HO-1信号通路能够改善PD模型小鼠行为学障碍,其机制可能与抑制神经元铁死亡有关。
Abstract:
ObjectiveThe purpose of this study is to investigate the ameliorative effects and the regulatory mechanisms of Nrf2/HO-1 signal pathway on behavioral dysfunction in mouse model of Parkinson's disease(PD).Methods Made preparation of MPTP mice model. In the MPTP mice model, ML385(Nrf2 inhibitor)or Ferrostatin-1(ferroptosis inhibitor)was administered. Behavioral analysis, dopaminergic neuronal losses, oxidative stress, and the expression of the proteins involved in the Nrf2/HO-1 signaling pathway and ferroptosis were evaluated after the experimental manipulation in mice.Results ML385 exacerbated behavioral deficits, tyrosine hydroxylase(TH)-positive neuronal losses, also further led to the overloaded iron deposition, ROS accumulation and Malondialdehyde(MDA)excretion. Meanwhile, ML385 decreased the level of SOD and glutathione(GSH), increased the protein expression of ACSL4 and the suppressed the protein expression of SLC7A11 and GPX4 in mouse model of PD. By contrast, administration of Ferrostatin-1 abolished the above ML385-mediated neurological damage effects without affecting the protein expression levels of Nrf2 and HO-1.Conclusion Nrf2/HO-1 signal pathway can improve behavioral impairment in MPTP-induced mice, and perhaps its mechanism is related to inhibiting ferroptosis of dopaminergic neuron.

参考文献/References:

[1] Chen XY,Liu C,Xue Y,et al.Changed firing activity of nigra dopaminergic neurons in Parkinson's disease[J]. Neurochemistry International,2023,162(0):105465. [2] Camargo CHF,Ferreira-Peruzzo SA,Ribas DIR,et al.Imbalance and gait impairment in Parkinson's disease:discussing postural instability and ataxia[J].Neurological Sciences,2024,45(4):1377-1388. [3] Mantry S,Deshmukh S,Mahajan K,et al. A potential use of dopamine agonist and monoamine oxidase B inhibitor in Parkinson's disease as apply by transdermal patch[J]. Journal of Coastal Life Medicine,2023,11(1):2546-2557. [4] di Biase L,Pecoraro PM,Carbone SP,et al.Levodopa-Induced dyskinesias in Parkinson's disease:an overview on pathophysiology, clinical manifestations, therapy management strategies and future directions[J].J Clin Med,2023,12(13):4427. [5] Scanga A,Lafontaine AL,Kaminska M.An overview of the effects of levodopa and dopaminergic agonists on sleep disorders in Parkinson's disease[J].J Clin Sleep Med,2023,19(6):1133-1144. [6] Chakrabarti S,Bisaglia M.Oxidative stress and neuroinflammation in parkinson's disease: the role of dopamine oxidation products[J].ANTIOXIDANTS,2023,12(4):955. [7] Chagraoui A,Anouar Y,De Deurwaerdere P,et al.To what extent may aminochrome increase the vulnerability of dopaminergic neurons in the context of Parkinson's disease[J].Int J Biochem Cell Biol,2024,168:106528. [8] Tognoloni A,Bartolini D,Pepe M,et al.Platelets rich plasma increases antioxidant defenses of tenocytes via Nrf2 signal pathway[J].Int J Mol Sci,2023,24(17):13299. [9] Wu JL,Hou SM,Yang L,et al.P62/SQSTM1 upregulates NQO1 transcription via Nrf2/Keap1a signaling pathway to resist microcystins-induced oxidative stress in freshwater mussel cristaria plicata[J].Aquat Toxicol,2023,255:106398. [10] Wei H,Li T,Zhang Y,et al.Cold stimulation causes oxidative stress, inflammatory response and apoptosis in broiler heart via regulating Nrf2/HO-1 and NF-κB pathway[J]. Journal of Thermal Biology,2023,116(0):103658. [11] Wu LY,Xian XH,Tan ZX,et al.The role of Iron metabolism, lipid metabolism, and redox homeostasis in Alzheimer's disease: from the perspective of ferroptosis[J].Mol Neurobiol,2023,60(5):2832-2850. [12] Endale HT,Tesfaye W,Mengstie TA.ROS induced lipid peroxidation and their role in ferroptosis[J].Front Cell Dev Biol,2023,11:1226044. [13] Dar NJ,John U,Bano N,et al.Oxytosis/ferroptosis in neurodegeneration: the underlying role of master regulator glutathione peroxidase 4(GPX4)[J].Mol Neurobiol,2024,61(3):1507-1526. [14] Zhang JB,Jia X,Cao Q,et al.Ferroptosis-regulated cell death as a therapeutic strategy for neurodegenerative diseases:current status and future prospects[J]. ACS chemical neuroscience,2023,14(17): 2995-3012. [15] Shen QQ,Jv XH,Ma XZ,et al.Cell senescence induced by toxic interaction between α-synuclein and Iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson's disease[J].Acta Pharmacol Sin,2024,45(2):268-281. [16] Zhang DL,Yao JY,Sun JY,et al.Iron accumulation in the ventral tegmental area in Parkinson's disease[J].Front Aging Neurosci,2023,15:1187684. [17] Jiang XY,Wu KY,Ye XY,et al.Novel druggable mechanism of Parkinson's disease:potential therapeutics and underlying pathogenesis based on ferroptosis[J].Med Res Rev,2023,43(4):872-896. [18] Long QH,Li T,Zhu QH,et al.Suanzaoren decoction alleviates neuronal loss, synaptic damage and ferroptosis of AD via activating DJ-1/Nrf2 signaling pathway[J].J Ethnopharmacol,2024,323:117679. [19] Li CX,Liu Y.Puerarin reduces cell damage from cerebral ischemia-reperfusion by inhibiting ferroptosis[J].Biochem Biophys Res Commun,2024,693:149324. [20] Pilotto F,Chellapandi DM,Puccio H.Omaveloxolone:a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia[J].Trends Mol Med,2024,30(2):117-125. [21] Shi KN,Li PB,Su HX,et al.MK-886 protects against cardiac ischaemia/reperfusion injury by activating proteasome-Keap1-NRF2 signalling[J].Redox Biol,2023,62:102706. [22] Zhang M,Liu ZM,Zhou W,et al.Ferrostatin-1 attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting ferroptosis[J].Transl Pediatr,2023,12(11):1944-1970. [23] Wojciechowska O,Kujawska M.Urolithin a in health and diseases: prospects for Parkinson's disease management[J].ANTIOXIDANTS,2023,12(7):1479. [24] Wang Y,Lv MN,Zhao WJ.Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases[J]. Ageing Research Reviews,2023,91(0):102035. [25] Liu T,Wang P,Yin H,et al.Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP+-induced models of Parkinson's disease[J]. Neural regeneration research,2023,18(11):2514-2519. [26] Bailey DK,Clark W,Kosman DJ.The Iron chelator, PBT434, modulates transcellular Iron trafficking in brain microvascular endothelial cells[J].PLoS One,2021,16(7):e0254794. [27] Zhang YG,Ye P,Zhu H,et al.Neutral polysaccharide from Gastrodia elata alleviates cerebral ischemia-reperfusion injury by inhibiting ferroptosis-mediated neuroinflammation via the NRF2/HO-1 signaling pathway[J].CNS Neurosci Ther,2024,30(3):e14456. [28] Zheng ZJ,Zhang SS,Liu XJ,et al.LRRK2 regulates ferroptosis through the system Xc-GSH-GPX4 pathway in the neuroinflammatory mechanism of Parkinson's disease[J].J Cell Physiol,2024,239(5):e31250. [29] Li T,Tan Y,Ouyang S,et al.Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis[J].Gene,2022,808:145968. [30] Zamanian MY,Parra RMR,Soltani A,et al.Targeting Nrf2 signaling pathway and oxidative stress by resveratrol for Parkinson's disease: an overview and update on new developments[J].Mol Biol Rep,2023,50(6):5455-5464. [31] Hassanein EHM,Ibrahim IM,Abd-Alhameed EK,et al.Nrf2/HO-1 as a therapeutic target in renal fibrosis[J].Life Sci,2023,334:122209. [32] Lin QS,Li S,Jin HJ,et al.Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis[J].Int J Biol Sci,2023,19(4):1192-1210. [33] Jiang PY,Zhou LY,Zhao LY,et al.Puerarin attenuates valproate-induced features of ASD in male mice via regulating Slc7a11-dependent ferroptosis[J].Neuropsychopharmacology,2024,49(3):497-507. [34] Li JB,Liu J,Zhou Z,et al.Tumor-specific GPX4 degradation enhances ferroptosis-initiated antitumor immune response in mouse models of pancreatic cancer[J].Sci Transl Med,2023,15(720):eadg3049. [35] Chen XQ,Zhu J,Li XZ,et al.ARHGAP6 suppresses breast cancer tumor growth by promoting ferroptosis via RhoA-ROCK1-p38 MAPK signaling[J].Front Biosci(Landmark Ed),2024,29(1):6. [36] Yan RH,Lin BY,Jin WW,et al.NRF2, a superstar of ferroptosis[J].Antioxidants,2023,12(9):1739.

备注/Memo

备注/Memo:
基金项目:河北省卫健委项目(202105148); 沧州市科技计划项目(21422083136); 邯郸市科学技术研究与发展项目(21422083136)
更新日期/Last Update: 2024-10-20