[1]段亦然,张礼萍,张夏婷,等.特发性伴中央颞区棘波癫痫谱系疾病的ELP4基因与脑异常放电源的关系[J].卒中与神经疾病杂志,2025,32(02):106-114.[doi:10.3969/j.issn.1007-0478.2025.02.002]
 Duan Yiran*,Zhang Liping,Zhang Xiating,et al.The relationship between ELP4 gene and abnormal brain discharge in idiopathic central temporal spine epilepsy spectrum disease[J].Stroke and Nervous Diseases,2025,32(02):106-114.[doi:10.3969/j.issn.1007-0478.2025.02.002]
点击复制

特发性伴中央颞区棘波癫痫谱系疾病的ELP4基因与脑异常放电源的关系()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第32卷
期数:
2025年02期
页码:
106-114
栏目:
癫痫
出版日期:
2025-04-20

文章信息/Info

Title:
The relationship between ELP4 gene and abnormal brain discharge in idiopathic central temporal spine epilepsy spectrum disease
文章编号:
1007-0478(2025)02-0106-09
作者:
段亦然张礼萍张夏婷张拥波王玉平
100050 北京,首都医科大学附属北京友谊医院神经内科[段亦然 张拥波(通信作者)]; 首都医科大学宣武医院儿科(张礼萍),神经内科[张夏婷 王玉平(通信作者)]
Author(s):
Duan Yiran* Zhang Liping Zhang Xiating et al.
*Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050
关键词:
癫痫 基因 脑磁图 单核苷酸多态性
Keywords:
Epilepsy Gene Magnetoencephalogram Single nucleotide polymorphism
分类号:
R742.1
DOI:
10.3969/j.issn.1007-0478.2025.02.002
文献标志码:
A
摘要:
目的 研究特发性伴中央颞区棘波癫痫谱系疾病(Spectrum of Idiopathic Rolandic Epilepsy Syndromes,简称IRES谱病)患者延伸蛋白复合体4亚基-配对盒基因6(Elongation protein 4-paired box gene 6,ELP4-PAX6)基因rs662702单核苷酸多态性与脑异常放电源的相关性。方法 首先,本研究收集75例诊断为IRES患者的临床资料,然后用Sanger法分析ELP4的单核苷酸多态性rs662702; 同时采集17例患者静息状态脑磁图数据,并采用单一等效电流偶极子(Single equivalent current dipole,SECD)模型分析了棘波放电源,从而确定了脑放电源的分布; 最后,采用Fisher检验法评估ELP4-PAX6 基因rs662702单核苷酸多态性与脑放电源的关系。结果 在10.7%的IRES患者中发现ELP4 rs662702 T等位基因,这些患者的发生率是健康对照组的4倍; 1例IRES患者(1.3%)发现TT纯合子,而健康对照组未发现TT纯合子; 16例患者(94.1%)的IRES棘波放电源为单侧,主要位于中央前回(58.8%); 携带ELP4 rs662702 T等位基因的患者的棘波电流源与非中央回(额叶和颞叶)有关(P<0.05),而不携带ELP4 rs662702 T等位基因患者的棘波电流源与中央区有关(P<0.05)。结论 携带ELP4 rs662702 T等位基因的IRES患者的棘波电流源与非中央区(包括额叶和颞叶)有关; 在体内证实了ELP4 rs662702 T等位基因过表达与IRES患者的棘波电流源分布有关,并为异常基因如何导致脑功能障碍以及精确靶向大脑异常放电源提供了重要依据。
Abstract:
ObjectiveTo study the single nucleotide polymorphism rs662702 of Elongation Protein 4-Paired Box Gene 6(ELP4-PAX6)in patients with Idiopathic rolandic epilepsy syndromes(IRES)and explore the relationship between the distribution of Rolandic spike sources and the single nucleotide polymorphism rs662702 in ELP4-PAX6.Methods First, clinical information was obtained from patients diagnosed with IRES. Next, the single nucleotide polymorphism rs662702 of ELP4 was analyzed with the Sanger method. Resting-state magnetoencephalography data were collected from 17 patients. The epileptic spike sources was analyzed with the Single equivalent current dipole(SECD)model and the spike distributions across the whole brain was determined. Finally, Fisher's test was performed to assess the relationship between the single nucleotide polymorphism rs662702 of ELP4-PAX6 and Rolandic spike sources.Results ELP4 rs662702 T alleles were found in 10.7% of IRES patients and occurred four times more frequently in these patients than in the healthy controls. TT homozygosity was found in one IRES patient(1.3%), while no TT homozygosity was found in the healthy control group. The IRES Rolandic spike sources were unilateral in sixteen patients(94.1%)and were mainly located in the anterior central gyrus(58.8%). The Rolandic spike source of patients with the ELP4 rs662702 T allele was correlated with the non-central gyrus(frontal and temporal lobes)(P<0.05), while the Rolandic spikes sources were correlated with the central gyrus in patients without the ELP4 rs662702 T allele(P<0.05).Conclusion The Rolandic spike sources of the IRES patients with the ELP4 rs662702 T allele were associated with the non-central gyrus, including the frontal and temporal lobes. That ELP4 rs662702 T allele overexpression is correlated with the Rolandic spike distribution in patients with IRES was verified in vivo, which provides important insights into how genetic abnormalities can lead to brain dysfunction and into the precise targeting of abnormal discharge sources in the brain.

参考文献/References:

[1] Fisher RS,Cross JH,D'Souza C,et al.Instruction manual for the ILAE 2017 operational classification of seizure types[J].Epilepsia,2017,58(4):531-542.
[2] Scheffer IE.Autosomal dominant rolandic epilepsy with speech dyspraxia[J].Epileptic Disord, 2000,2(Suppl 1):S19-22.
[3] Gobbi G,Boni A,Filippini M.The spectrum of idiopathic Rolandic epilepsy syndromes and idiopathic occipital epilepsies: from the benign to the disabling[J].Epilepsia,2006,47 Suppl 2:62-66.
[4] Bouma PA.The course of benign partial epilepsy of childhood with centrotemporal spikes: a meta-analysis[J].Neurology,1997,48(2):430-437.
[5] Cavazzuti GB.Epidemiology of different types of epilepsy in school age children of Modena, Italy[J].Epilepsia,1980,21(1): 57-62.
[6] Kramer U.Epidemiology of epilepsy in childhood: a cohort of 440 consecutive patients[J].Pediatr Neurol,1998,18(1):46-50.
[7] Kramer U.Benign childhood epilepsy with centrotemporal spikes: clinical characteristics and identification of patients at risk for multiple seizures[J].J Child Neurol,2002,17(1):17-19.
[8] Baglietto MG,Battaglia FM,Nobili L,et al.Neuropsychological disorders related to interictal epileptic discharges during sleep in benign epilepsy of childhood with centrotemporal or rolandic spikes[J].Developmental Medicine & Child Neurology,2001,43(6):407-412.
[9] Lindgren S.Development of cognitive functions in children with rolandic epilepsy[J].Epilepsy Behav,2004,5(6): 903-910.
[10] Fejerman N,Caraballo R,Tenembaum SN.Atypical evolutions of benign localization-related epilepsies in children: are they predictable?[J].Epilepsia,2000,41(4):380-390.
[11] Tovia E.The prevalence of atypical presentations and comorbidities of benign childhood epilepsy with centrotemporal spikes[J].Epilepsia,2011,52(8):1483-1488.
[12] Vears DF.Clinical genetic studies in benign childhood epilepsy with centrotemporal spikes[J].Epilepsia,2012,53(2):319-324.
[13] Beaussart M,Loiseau P.Hereditary factors in a random population of 5200 epileptics[J].Epilepsia,1969,10(1):55-63.
[14] Lerman P,Kivity S.Benign focal epilepsy of childhood. A follow-up study of 100 recovered patients[J].Arch Neurol,1975,32(4):261-264.
[15] Creppe C.Elongator controls the migration and differentiation of cortical neurons through acetylation of alpha-tubulin[J].Cell,2009,136(3):551-564.
[16] Kim JH,Lane WS,Reinberg D.Human elongator facilitates RNA polymerase II transcription through chromatin[J].Proc Natl Acad Sci U S A,2002,99(3):1241-1246.
[17] Gkampeta A,Pavlou E.Emerging genetic influences in benign epilepsy with centro-temporal spikes-BECTS[J].Epilepsy Res,2012,101(3):197-201.
[18] Strug LJ.Centrotemporal sharp wave EEG trait in rolandic epilepsy maps to elongator protein complex 4(ELP4)[J].Eur J Hum Genet,2009,17(9):1171-1181.
[19] Kramer U,Zelnik N,Lerman-Sagie T,et al.Benign childhood epilepsy with centrotemporal spikes: clinical characteristics and identification of patients at risk for multiple seizures[J].J Child Neurol,2002,17(1):17-19.
[20] Lal D,Reinthaler EM,Altmüller J,et al.RBFOX1 and RBFOX3 mutations in rolandic epilepsy[J].PLoS One,2013,8(9):e73323.
[21] Lal D,Reinthaler EM,Schubert J,et al.DEPDC5 mutations in genetic focal epilepsies of childhood[J].Ann Neurol,2014,75(5):788-792.
[22] Lemke JR,Lal D,Reinthaler EM,et al.Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes[J].Nat Genet,2013,45(9):1067-1072.
[23] Lin YY,Shih YH,Chang KP,et al.MEG localization of rolandic spikes with respect to SI and SII cortices in benign rolandic epilepsy[J].Neuroimage,2003,20(4):2051-2061.
[24] Lesca G.Epileptic encephalopathies of the Landau-Kleffner and continuous spike and waves during slow-wave sleep types:genomic dissection makes the link with autism[J].Epilepsia,2012,53(9):1526-1538.
[25] Lemke JR.Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes[J].Nat Genet,2013,45(9):1067-1072.
[26] Lesca G.GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction[J].Nat Genet,2013,45(9):1061-1066.
[27] Carvill GL.GRIN2A mutations cause epilepsy-aphasia spectrum disorders[J].Nat Genet, 2013,45(9):1073-1076.
[28] Panjwani N,Wilson MD,Addis L,et al.A microRNA-328 binding site in PAX6 is associated with centrotemporal spikes of rolandic epilepsy[J].Ann Clin Transl Neurol,2016,3(7):512-522.
[29] Manuel M,Georgala PA,Carr CB,et al.Controlled overexpression of Pax6 in vivo negatively autoregulates the Pax6 locus, causing cell-autonomous defects of late cortical progenitor proliferation with little effect on cortical arealization[J].Development,2007,134(3):545-555.
[30] Neubauer BA,Waldegger S,Heinzinger J,et al.KCNQ2 and KCNQ3 mutations contribute to different idiopathic epilepsy syndromes[J].Neurology,2008,71:177-183.
[31] O'Donovan CA.To do or not to do? Magnetoencephalography in the presurgical evaluation of epilepsy[J].Epilepsy Behav,2015,46:8-9.
[32] Pal DK,Li W,Clarke T,et al.Pleiotropic effects of the 11p13 locus on developmental verbal dyspraxia and EEG centrotemporal sharp waves[J].Genes Brain Behav,2010,9(8):1004-1012.
[33] Kakisaka Y,Iwasaki M,Haginoya K,et al.Somatotopic distribution of peri-rolandic spikes May predict prognosis in pediatric-onset epilepsy with sensorimotor seizures[J].Clin Neurophysiol,2011,122(5):869-873.
[34] Reinthaler EM,Dejanovic B,Lal D,et al.Rare variants in γ-aminobutyric acid type a receptor genes in rolandic epilepsy and related syndromes[J].Ann Neurol,2015,77(6):972-986.
[35] Kim H,Yoo IH,Lim BC,et al.Averaged EEG spike dipole analysis may predict atypical outcome in benign childhood epilepsy with centrotemporal spikes(BCECTS)[J].Brain Dev,2016,38(10):903-908.
[36] Reinthaler EM,Lal D,Jurkowski W,et al.Analysis of ELP4, SRPX2, and interacting genes in typical and atypical rolandic epilepsy[J].Epilepsia,2014,55(8):e89-e93.
[37] Reinthaler EM,Lal D,Lebon S,et al.16p11.2 600 kb duplications confer risk for typical and atypical rolandic epilepsy[J].Hum Mol Genet,2014,23(22):6069-6080.
[38] Xiong WX,Zhou D.Progress in unraveling the genetic etiology of rolandic epilepsy[J].Seizure,2017,47:99-104.

备注/Memo

备注/Memo:
基金项目:由友谊种子计划基金资助(编号为YYZZ202220)
更新日期/Last Update: 2025-04-20