[1]邹利 王云甫.线粒体自噬及其机制在神经系统疾病中的研究进展[J].卒中与神经疾病杂志,2016,23(04):302-309.[doi:10.3969/j.issn.1007-0478.2016.04.025]
点击复制

线粒体自噬及其机制在神经系统疾病中的研究进展
(/HTML)
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第23卷
期数:
2016年04期
页码:
302-309
栏目:
综 述
出版日期:
2016-08-26

文章信息/Info

作者:
 邹利 王云甫
442000 湖北医药学院附属十堰市太和医院神经内科[邹利 王云甫(通信作者)]
分类号:
R361+.3 R741
DOI:
10.3969/j.issn.1007-0478.2016.04.025
文献标志码:
A

参考文献/References:

[1] Shacka JJ,Roth KA,Zhang J.The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy[J].Front Biosci,2008,13:718-736.
[2] Chinnery PF,Schon EA.Mitochondria[J].J Neurol Neurosurg Psychiatry,2003,74:1188-1199.
[3] Sheng ZH.Mitochondrial trafficking and anchoring in neurons: New insight and implications[J].J Cell Biol,2014,204(7):1087-1098.
[4] Baehrecke EH.How death shapes Life during development[J].Nat Rev Mol Cell Biol,2002,3(10):779-787.
[5] Fuchs Y,Steller H.Programmed cell death in animal development and disease[J].Cell,2011,147(4):742-758.
[6] Yuan J,Kroemer G.Alternative cell death mechanisms in development and beyond[J].Genes Dev,2010,24(23):2592-2602.
[7] Galluzzi L,Vitale I,Abrams JM,et al.Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012[J].Cell Death Differ,2012,19(1):107-120.
[8] Choi AM,Ryter SW,Levine B.Autophagy in human health and disease[J].N Engl J Med,2013,368(7):651-662.
[9] Mizushima N.Autophagy in protein and organelle turnover[J].Cold Spring Harb Symp Quant Biol,2011,76:397-402.
[10] Denton D,Xu T,Kumar S.Autophagy as a pro-death pathway[J].Immunol Cell Biol,2015,93(1):35-42.
[11] Singh R,Kaushik S,Wang Y,et al.Autophagy regulates lipid metabolism[J].Nature,2009,458(7242):1131-1135.
[12] Yang Z,Klionsky DJ.Eaten alive: a history of macroautophagy[J].Nat Cell Biol,2010,12(9):814-822.
[13] Newmeyer DD,Ferguson-Miller S.Mitochondria: releasing power for Life and unleashing the machineries of death[J].Cell,2003,112(4):481-490.
[14] Li M,Sun W,Yang YP,et al.In vitro anticancer property of a novel Thalidomide analogue through inhibition of NF-kappaB activation in HL-60 cells[J].Acta Pharmacol Sin,2009,30(1):134-140.
[15] Komatsu M,Waguri S,Chiba T,et al.Loss of autophagy in the central nervous system causes neurodegeneration in mice[J].Nature,2006,441(795):880-884.
[16] Reef S,Zalckvar E,Shifman O,et al.A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death[J].Mol Cell,2006,22(4):463-475.
[17] Kraft C,Deplazes A,Sohrmann M,et al.Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease[J].Nat Cell Biol,2008,10(5):602-610.
[18] Macintosh GC,Bassham DC.The connection between ribophagy,autophagy and ribosomal RNA decay[J].Autophagy,2011,7(6):662-663.
[19] Ding WX,Li M,Chen X,et al.Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice[J].Gastroenterology,2010,139(5):1740-1752.
[20] Levine B.Eating oneself and uninvited guests: autophagy-related pathways in cellular defense[J].Cell,2005,120(2):159-162.
[21] Kudchodkar SB,Levine B.Viruses and autophagy[J].Rev Med Virol,2009,19:359-378.
[22] Ding WX,Ni HM,Gao W,et al.Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability[J].Am J Pathol,2007,171(2):513-524.
[23] Ding WX,Yin XM.Sorting,recognition and activation of the misfolded protein degradation pathways through macroautophagy and the proteasome[J].Autophagy,2008,4(2):141-150.
[24] Matsumoto G,Wada K,Okuno M,et al.Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins[J].Mol Cell,2011,44(2):279-289.
[25] Rodriguez-Enriquez S,Kim I,Currin RT,et al.Tracker dyes to probe mitochondrial autophagy(mitophagy)in rat hepatocytes[J].Autophagy,2006,2(1):39-46.
[26] Kim I,Rodriguez-Enriquez S,Lemasters JJ.Selective degradation of mitochondria by mitophagy[J].Arch Biochem Biophys,2007,462(2):245-253.
[27] Mizushima N,Levine B,Cuervo AM,et al.Autophagy fights disease through cellular self-digestion[J].Nature,2008,451(7182):1069-1075.
[28] Nowikovsky K,Reipert S,Devenish RJ,et al.Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity,osmotic swelling and mitophagy[J].Cell Death Differ,2007,14(9):1647-1656.
[29] Twig G,Elorza A,Molina AJ,et al.Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J].EMBO J,2008,27(2):433-446.
[30] Tal R,Winter G,Ecker N,et al.Aup1p,a yeast mitochondrial protein phosphatase homolog,is required for efficient stationary phase mitophagy and cell survival[J].J Biol Chem,2007,282(8):5617-5624.
[31] Kissov I,Deffieu M,Manon S,et al.Uth1p is involved in the autophagic degradation of mitochondria[J].J Biol Chem,2004,279(37):39068-39074.
[32] Schweers RL,Zhang J,Randall MS,et al.NIX is required for programmed mitochondrial clearance during reticulocyte maturation[J].Proc Natl Acad Sci U S A,2007,104(49):19500-19505.
[33] Kundu M,Lindsten T,Yang CY,et al.Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation[J].Blood,2008,112(4):1493-1502.
[34] Xie Z,Klionsky DJ.Autophagosome formation: core machinery and adaptations[J].Nat Cell Biol,2007,9(10):1102-1109.
[35] Zhang Y,Qi H,Taylor R,et al.The role of autophagy in mitochondria maintenance: characterization of mitochondrial functions in autophagy-deficient S. cerevisiae strains[J].Autophagy,2007,3(4):337-346.
[36] Okamoto K,Kondo-Okamoto N,Ohsumi Y.Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy[J].Dev Cell,2009,17(1):87-97.
[37] Kanki T,Wang K,Klionsky DJ.A genomic screen for yeast mutants defective in mitophagy[J].Autophagy,2010,6(2):278-280.
[38] Kanki T,Wang K,Cao Y,et al.Atg32 is a mitochondrial protein that confers selectivity during mitophagy[J].Dev Cell,2009,17(1):98-109.
[39] Kanki T,Klionsky DJ.Mitophagy in yeast occurs through a selective mechanism[J].J Biol Chem,2008,283(47):32386-32393.
[40] Mortensen M,Ferguson DJ,Edelmann M,et al.Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo[J].Proc Natl Acad Sci U S A,2010,107(2):832-837.
[41] Aerbajinai W,Giattina M,Lee YT,et al.The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation[J].Blood,2003,102(2):712-717.
[42] Sandoval H,Thiagarajan P,Dasgupta SK,et al.Essential role for Nix in autophagic maturation of erythroid cells[J].Nature,2008,454(721):232-235.
[43] Schwarten M,Mohrl der J,Ma P,et al.Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy[J].Autophagy,2009,5(5):690-698.
[44] Novak I,Kirkin V,Mcewan DG,et al.Nix is a selective autophagy receptor for mitochondrial clearance[J].EMBO Rep,2010,11(1):45-51.
[45] Ding WX,Ni HM,Li M,et al.Nix is critical to two distinct phases of mitophagy,reactive Oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming[J].J Biol Chem,2010,285(36):27879-27890.
[46] Piquereau J,Godin R,Desch nes S,et al.Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction[J].Autophagy,2013,9(11):1837-1851.
[47] Narendra D,Tanaka A,Suen DF,et al.Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J].J Cell Biol,2008,183(5):795-803.
[48] Vives-Bauza C,Zhou C,Huang Y,et al.PINK1-dependent recruitment of Parkin to mitochondria in mitophagy[J].Proc Natl Acad Sci U S A,2010,107(1):378-383.
[49] Narendra DP,Jin SM,Tanaka A,et al.PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J].PLoS Biol,2010,8(1):e1000298.
[50] Geisler S,Holmstroem KM,Skujat D,et al.PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J].Nat Cell Biol,2010,12(2):U70-119.
[51] Fedorowicz MA,De Vries-Schneider RL,R b C,et al.Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy[J].EMBO Rep,2014,15(1):86-93.
[52] Lee JY,Nagano Y,Taylor JP,et al.Disease-causing mutations in parkin impair mitochondrial ubiquitination,aggregation,and HDAC6-dependent mitophagy[J].J Cell Biol,2010,189(4):671-679.
[53] Scarffe LA,Stevens DA,Dawson VL,et al.Parkin and PINK1: much more than mitophagy[J].Trends Neurosci,2014,37(6):315-324.
[54] Shibata M,Lu T,Furuya T,et al.Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1[J].J Biol Chem,2006,281(20):14474-14485.
[55] Jankovic J.Parkinson’s disease: clinical features and diagnosis[J].J Neurol Neurosurg Psychiatry,2008,79(4):368-376.
[56] Lin MT,Beal MF.Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases[J].Nature,2006,443(7113):787-795.
[57] Deng H,Dodson MW,Huang H,et al.The parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in drosophila[J].Proc Natl Acad Sci U S A,2008,105(38):14503-14508.
[58] Alvarez-Erviti L,Rodriguez-Oroz MC,Cooper JM,et al.Chaperone-mediated autophagy markers in Parkinson disease brains[J].Arch Neurol,2010,67(12):1464-1472.
[59] Feng D,Liu L,Zhu YS,et al.Molecular signaling toward mitophagy and its physiological significance[J].Exp Cell Res,2013,319(12):1697-1705.
[60] Pickrell AM,Youle RJ.The roles of PINK1,parkin,and mitochondrial fidelity in Parkinson’s disease[J].Neuron,2015,85(2):257-273.
[61] Joselin AP,Hewitt SJ,Callaghan SM,et al.ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons[J].Hum Mol Genet,2012,21(22):4888-4903.
[62] Sampaio-Marques B,Felgueiras C,Silva A,et al.SNCA(α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2(Sir2)-mediated mitophagy[J].Autophagy,2012,8(10):1494-1509.
[63] Winslow AR,Chen CW,Corrochano S,et al.α-Synuclein impairs macroautophagy: implications for parkinson’s disease[J].J Cell Biol,2010,190(6):1023-1037.
[64] Rogawski MA,Wenk GL.The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease[J].CNS Drug Rev,2003,9(3):275-308.
[65] Maruszak A,Zekanowski C.Mitochondrial dysfunction and Alzheimer’s disease[J].Prog Neuropsychopharmacol Biol Psychiatry,2011,35:320-330.
[66] Butler D,Nixon RA,Bahr BA.Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases[J].Autophagy,2006,2(3):234-237.
[67] Nixon RA,Wegiel J,Kumar A,et al.Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study[J].J Neuropathol Exp Neurol,2005,64(2):113-122.
[68] Parsons MJ,Green DR.Mitochondria and apoptosis: a quick take on a long view[J].F1000 Biol Rep,2009,1:17.
[69] Frieden M,Arnaudeau S,Castelbou C,et al.Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases[J].J Biol Chem,2005,280(52):43198-43208.
[70] Manczak M,Calkins MJ,Reddy PH.Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage[J].Hum Mol Genet,2011,20(13):2495-2509.
[71] Wang X,Su B,Zheng L,et al.The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease[J].J Neurochem,2009,109(Suppl 1):153-159.
[72] Moreira PI,Siedlak SL,Wang X,et al.Increased autophagic degradation of mitochondria in Alzheimer disease[J].Autophagy,2007,3(6):614-615.
[73] Moreira PI,Siedlak SL,Wang X,et al.Autophagocytosis of mitochondria is prominent in Alzheimer disease[J].J Neuropathol Exp Neurol,2007,66(6):525-532.
[74] Palikaras K,Tavernarakis N.Mitophagy in neurodegeneration and aging[J].Front Genet,2012,3:297.
[75] Khandelwal PJ,Herman AM,Hoe HS,et al.Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated Abeta in AD models[J].Hum Mol Genet,2011,20(11):2091-2102.
[76] Garc a-Escudero V,Mart n-Maestro P,Perry G,et al.Deconstructing mitochondrial dysfunction in Alzheimer disease[J].Oxid Med Cell Longev,2013:162152.
[77] Pavese N,Gerhard A,Tai YF,et al.Microglial activation correlates with severity in Huntington disease: a clinical and PET study[J].Neurology,2006,66(11):1638-1643.
[78] Gusella JF,Macdonald ME.Huntington’s disease: CAG genetics expands neurobiology[J].Curr Opin Neurobiol,1995,5(5):656-662.
[79] Miwa S,St-Pierre J,Partridge L,et al.Superoxide and Hydrogen peroxide production by Drosophila mitochondria[J].Free Radic Biol Med,2003,35(8):938-948.
[80] Orr AL,Li S,Wang CE,et al.N-terminal mutant huntingtin associates with mitochondria and impairs mitochondrial trafficking[J].J Neurosci,2008,28(11):2783-2792.
[81] Bossy-Wetzel E,Petrilli A,Knott AB.Mutant huntingtin and mitochondrial dysfunction[J].Trends Neurosci,2008,31(12):609-616.
[82] Itoh K,Nakamura K,Iijima M,et al.Mitochondrial dynamics in neurodegeneration[J].Trends Cell Biol,2013,23(2):64-71.
[83] Ravikumar B,Berger Z,Vacher C,et al.Rapamycin pre-treatment protects against apoptosis[J].Hum Mol Genet,2006,15(7):1209-1216.
[84] Kegel KB,Kim M,Sapp E,et al.Huntingtin expression stimulates endosomal-lysosomal activity,endosome tubulation,and autophagy[J].J Neurosci,2000,20(19):7268-7278.
[85] Panov AV,Gutekunst CA,Leavitt BR,et al.Early mitochondrial Calcium defects in Huntington’s disease are a direct effect of polyglutamines[J].Nat Neurosci,2002,5(8):731-736.
[86] Modugno N,Curr A,Giovannelli M,et al.The prolonged cortical silent period in patients with Huntington’s disease[J].Clin Neurophysiol,2001,112(8):1470-1474.
[87] Herishanu YO,Parvari R,Pollack Y,et al.Huntington disease in subjects from an Israeli Karaite community carrying alleles of intermediate and expanded CAG repeats in the HTT gene: Huntington disease or phenocopy?[J].J Neurol Sci,2009,277(1/2):143-146.
[88] Wong YC,Holzbaur EL.The regulation of autophagosome dynamics by huntingtin and HAP1 is disrupted by expression of mutant huntingtin,leading to defective cargo degradation[J].J Neurosci,2014,34(4):1293-1305.
[89] Reddy PH.Increased mitochondrial fission and neuronal dysfunction in Huntington’s disease: implications for molecular inhibitors of excessive mitochondrial fission[J].Drug Discov Today,2014,19(7):951-955.
[90] Martinez-Vicente M,Talloczy Z,Wong E,et al.Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease[J].Nat Neurosci,2010,13(5):567-576.
[91] Kawamata H,Manfredi G.Mitochondrial dysfunction and intracellular Calcium dysregulation in ALS[J].Mech Ageing Dev,2010,131(7/8):517-526.
[92] Beckman JS,Estevez AG,Crow JP,et al.Superoxide dismutase and the death of motoneurons in ALS[J].Trends Neurosci,2001,24:S15-S20.
[93] Julien JP.ALS: astrocytes move in as deadly neighbors[J].Nat Neurosci,2007,10(5):535-537.
[94] Okamoto K,Fujita Y,Mizuno Y.Pathology of protein synthesis and degradation systems in ALS[J].Neuropathology,2010,30(2):189-193.
[95] Li B,Liu XY,Li Z,et al.Effect of ALS IgG on motor neurons in organotypic spinal cord cultures[J].Can J Neurol Sci,2008,35(2):220-225.
[96] Shi P,Str m AL,Gal J,et al.Effects of ALS-related SOD1 mutants on dynein- and KIF5-mediated retrograde and anterograde axonal transport[J].Biochim Biophys Acta,2010,1802(9):707-716.
[97] Rosen DR,Siddique T,Patterson D,et al.Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis[J].Nature,1993,362:59-62.
[98] Roxburgh RH,Seaman SR,Masterman T,et al.Multiple sclerosis severity score: using disability and disease duration to rate disease severity[J].Neurology,2005,64(7):1144-1151.
[99] Noseworthy J,Kappos L,Daumer M.Competing interests in multiple sclerosis research[J].Lancet,2003,361(9354):350-351.
[100]Mahad D,Ziabreva I,Lassmann H,et al.Mitochondrial defects in acute multiple sclerosis lesions[J].Brain,2008,131(Pt 7):1722-1735.
[101]Young EA,Fowler CD,Kidd GJ,et al.Imaging correlates of decreased axonal Na+/K+ ATPase in chronic multiple sclerosis lesions[J].Ann Neurol,2008,63(4):428-435.

备注/Memo

备注/Memo:
(2015-12-30收稿)
 基金项目:湖北省科技厅自然科学基金(项目编号为2010CDB09103); 湖北省教育厅重点项目(项目编号为D20112102); 2014年湖北医药学院优秀中青年科技创新国家资助计划项目(项目编号为2014CXX01)
更新日期/Last Update: 2016-08-31