[1]方聪聪,毛善平,董慧敏,等.线粒体自噬与中枢神经系统疾病关系的研究进展[J].卒中与神经疾病杂志,2017,24(02):165-171.[doi:10.3969/j.issn.1007-0478.2017.02.025]
点击复制

线粒体自噬与中枢神经系统疾病关系的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第24卷
期数:
2017年02期
页码:
165-171
栏目:
综 述
出版日期:
2017-04-26

文章信息/Info

文章编号:
1007-0478(2017)02-0165-06
作者:
方聪聪毛善平董慧敏刘宝辉王舜
430060 武汉大学人民医院神经内科[方聪聪 毛善平(通信作者)董慧敏 刘宝辉 王舜]
分类号:
R742
DOI:
10.3969/j.issn.1007-0478.2017.02.025

参考文献/References:

[1] Mizushima N, Komatsu M. Autophagy: Renovation of Cells and Tissues [J]. Cell, 2011, 147(4): 728-741.
[2] Tolkovsky AM.Mitophagy[J].Biechim Biophys Acta,2009,1793(9):1508-1515.
[3] Yang Z,Klionsky D.An overview of the molecular mechanism of autophagy[J].Curr Top Microbiol Immunol,2009,335(41):1-32.
[4] Kirkin V,Lamark T,Johansen T,et al.NBR1 cooperates with p62 in selective autophagy of ubiquitinated targets[J].Autophagy,2009,5(5):732-733.
[5] Lemasters JJ.Perspective - selective mitochondrial autophagy,or mitophagy,as a targeted defense against oxidative stress,mitochondrial dysfunction,and aging[J].Rejuvenation Res,2005,8(1):3-5.
[6] Itoh K,Nakamura K,Iijima M,et al.Mitochondrial dynamics in neurodegeneration[J].Trends Cell Biol,2013,23(2):64-71.
[7] Scarffe LA,Stevens DA,Dawson VL,et al.Parkin and PINK1: much more than mitophagy[J].Trends Neurosci,2014,37(6):315-324.
[8] Cozuacik D.Kimehi a autophagy as a cell death and tumor suppressor mechanism[J].Oncogene,2004,23(16):2891-2906.
[9] Kimura S,Fujita N,Noda T,et al.Monitoring autophagy in mammalian cultured cells through the dynamics of LC3[J].Methods Enzymol,2009,452(8):1-12.
[10] Aita VM,Liang XH,Murty VV,et al.Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21[J].Genomics,1999,59(1):59-65.
[11] Kang R,Zeh HJ,Lotze MT,et al.The beclin 1 network regulates autophagy and apoptosis[J].Cell Death Differ,2011,18(4):571-580.
[12] Sandoval H, Thiagarajan P, Dasgupta S K, et al. Essential role for Nix in autophagic maturation of erythroid cells[J]. Nature, 2008, 454(7201): 232-235.
[13] Narendra D,Tanaka A,Suen DF,et al.Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. Cell Biol,2008,183(5):795-803.
[14] Murakawa T,Yamaguchi O,Hashimoto A,et al.Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation[J].Nat Commun,2015,6(6):7527.
[15] Schweers RL,Zhang J,Randall MS,et al.NIX is required for programmed mitochondrial clearance during reticulocyte maturation[J].Proc Natl Acad Sci U S A,2007,104(49):19500-19505.
[16] Xing L,Zhang M,Chen D.Smurf control in bone cells[J]. Cell Biochem,2010,110(3):554-563.
[17] A. Orvedahl, R. Sumpter Jr., G. Xiao, A. Ng, Z. Zou, Y. Tang, et al. Image-based genome-wide siRNA screen identifies selective autophagy factors [J]. Nature, 2011, 480(7375): 113-117.
[18] Oka T,Hikoso S,Yamaguchi O,et al.Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure[J].Nature,2012,485(7397):251-255.
[19] Ma X,Godar RJ,Liu H,et al.Enhancing lysosome biogenesis attenuates BNIP3-induced cardiomyocyte death[J].Autophagy,2012,8(3):297-309.
[20] Zhang J.Autophagy and mitophagy in cellular damage control[J].Redox Biol,2013,1(1):19-23.
[21] Gomes L C, Scorrano L. Mitochondrial morphology in mitophagy and macroautophagy[J].Biochimica et Biophysica Acta(BBA)-Molecular Cell Research, 2013, 1833(1): 205-212.
[22] Kurihara Y, Kanki T, Aoki Y, et al. Mitophagy plays an essential role in reducing mitochondrial production of reactive oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial quantity and quality in yeast[J]. Journal of Biological Chemistry, 2012, 287(5): 3265-3272.
[23] Liu L,Feng D,Chen G,et al.Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells[J].Nat Cell Biol,2012,14(2):177-185.
[24] T. Yorimitsu, D.J. Klionsky. Autophagy: molecular machinery for self-eating [J]. Cell death and differentiation, 2005, 12(2):1542-1552.
[25] Mortimore GE,Schworer CM.Induction of autophagy by amino-acid deprivation in perfused rat liver[J].Nature,1977,270(5633):174-176.
[26] Mizushima N,Yamamoto A,Matsui M,et al.In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker[J].Mol Biol Cell,2004,15(3):1101-1111.
[27] Tolkovsky AM,Xue L,Fletcher GC,et al.Mitochondrial disappearance from cells: a Clue to the role of autophagy in programmed cell death and disease?[J].Biochimie,2002,84(2/3):233-240.
[28] Noda NN,Ohsumi Y,Inagaki F.Atg8-family interacting motif crucial for selective autophagy[J].FEBS Lett,2010,584(7):1379-1385.
[29] Kitada T,Asakawa S,Hattori N,et al.Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism[J].Nature,1998,392(6676):605-608.
[30] Springer W,Kahle PJ.Regulation of PINKI-Parkin-mediated mitophagy [J].Autophagy,2011,7(3):266-278.
[31] Kim Y,Park J,Kim S,et al.PINK1 controls mitochondrial localization of Parkin through direct phosphorylation[J].Biochem Biophys Res Commun,2008,377(3):975-980.
[32] Lee JY,Nagano Y,Taylor JP,et al.Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy[J]. Cell Biol,2010,189(4):671-679.
[33] Narendra D,Kane LA,Hauser DN,et al.p62/SQSTM1 is required for parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both[J].Autophagy,2010,6(8):1090-1106.
[34] Matsuda N,Sato S,Shiba K,et al.PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy[J]. Cell Biol,2010,189(2):211-221.
[35] Gegg ME,Cooper JM,Chau KY,et al.Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy[J].Hum Mol Genet,2010,19(24):4861-4870.
[36] Tanaka A,Cleland MM,Xu S,et al.Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin[J]. Cell Biol,2010,191(7):1367-1380.
[37] Geisler S,Holmstroem KM,Skujat D,et al.PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J].Nat Cell Biol,2010,12(2):70-119.
[38] Narendra D,Tanaka A,Suen DF,et al.Parkin is recruited selectively to impaired mitochondria and promotes their autophagy[J]. Cell Biol,2008,183(5):795-803.
[39] Narendra DP,Jin SM,Tanaka A,et al.PINK1 is selectively stabilized on impaired mitochondria to activate Parkin[J].PLoS Biol,2010,8(1): 110-118.
[40] Yu SS,Zheng SF.Inhibition of mitochondrial Calcium uniporter protects neurocytes from ischemia/reperfusion injury via the inhibition of excessive mitophagy[Z],2016:012.
[41] Rodriguez-Enriquez S,Kim I,Currin RT,et al.Tracker dyes to probe mitochondrial autophagy(mitophagy)in rat hepatocytes[J].Autophagy,2006,2(1):39-46.
[42] Kane L A, Lazarou M, Fogel A I, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity[J]. The Journal of cell biology, 2014, 205(2): 143-153.
[43] Koyano F,Okatsu K,Kosako H,et al. Ubiquitin is phosphorylated by PINK1 to activate parkin[J].Nature,2014,510(7503):162-166.
[44] Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65[J]. Biochemical Journal, 2014, 460(1): 127-141.
[45] Kumar A, Aguirre J D, Condos T E C, et al. Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis[J]. The EMBO Journal, 2015, 34(20): 2506-2521.
[46] Ordureau A, Heo J M, Duda D M, et al. Defining roles of PARKIN and ubiquitin phosphorylation by PINK1 in mitochondrial quality control using a ubiquitin replacement strategy[J]. Proceedings of the National Academy of Sciences, 2015, 112(21): 6637-6642.
[47] T.Cornelissen,D.Haddad,F.Wauters,C.VanHumbeeck,W.Mandemakers,B.Koentjoro,C.Sue,K.Gevaert,B.DeStrooper,P.Verstreken,W.Vandenberghe.The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy [J]. Human Molecular Genetics, 2014, 23(19): 5227-5242.
[48] J.R.Liang,A.Martinez,J.D.Lane,U.Mayor,M.J.Clague,S.Urbe. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death [J]. EMBO Reports, 2015, 16(5): 618-627.
[49] Y.Wang,et al. Deubiquitinating enzymes regulate PARK2-mediated mitophagy [J]. Autophagy, 2015, 11(1): 595-606.
[50] T.M.Durcan,M.Y.Tang,J.R.Perusse,E.A.Dashti,M.A.Aguileta,G.L.McLelland,P.Gros,T.A.Shaler,D.Faubert,B.Coulombe,E.A.Fon. USP8 regulates mitophagy by removing K6-linked ubiquitin conjugates from parkin [J]. The EMBO Journal, 2014, 33(21): 2473-2491.
[51] Hanna RM.Microtubule-associated protein 1 light chain 3(LC3)interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J].Biol Chem,2012,287(23):19094-19104.
[52] Novak I,Kirkin V,Mcewan DG,et al.Nix is a selective autophagy receptor for mitochondrial clearance[J].EMBO Rep,2010,11(1):45-51.
[53] Hamacher-Brady A,Brady NR,Logue SE,et al.Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy[J].Cell Death Differ,2007,14(1):146-157.
[54] Hanna RA,Quinsay MN,Orogo AM,et al.Microtubule-associated protein 1 light chain 3(LC3)interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy[J].J Biol Chem,2012,287(23):19094-19104.
[55] Sandoval H,Thiagarajan P,Dasgupta SK,et al.Essential role for Nix in autophagic maturation of erythroid cells[J].Nature,2008,454(721):232-235.
[56] Novak I,Kirkin V,Mcewan DG,et al.Nix is a selective autophagy receptor for mitochondrial clearance[J].EMBO Rep,2010,11(1):45-51.
[57] Whitworth AJ,Pallanck LJ.The PINKI/parkin pathway:a mito-chondrial quality control system[J]. Bioenerg Biomembr,2009,5(41):499-503.
[58] Alvarez-Erviti L,Rodriguez-Oroz MC,Cooper JM,et al.Chaperone-mediated autophagy markers in Parkinson disease brains[J].Arch Neurol,2010,67(12):1464-1472.
[59] Lin W,Kang UJ.Characterization of PINK1 processing, stability, and subcellular localization[J].J Neurochem,2008,106(1):464-474.
[60] Marongiu R,Spencer B,Crews L,et al.Mutant pink1 induces mitochondrial dysfunction in a neuronal cell model of parkinson's disease by disturbing Calcium flux[J].J Neurochem,2009,108(6):1561-1574.
[61] Deng H,Dodson MW,Huang H,et al.The parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in drosophila[J].Proc Natl Acad Sci U S A,2008,105(38):14503-14508.
[62] Zhang X,Yan H,Yuan Y,et al.Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance[J].Autophagy,2013,9(9):1321-1333.
[63] 李强.雷帕霉素对脑缺血再灌注后线粒体损伤的影响[D].上海:上海交通大学医学院,2012.
[64] Borutaite V,Toleikis A,Brown GC.In the eye of the storm: mitochondrial damage during heart and brain ischaemia[J].FEBS J,2013,280(20):4999-5014.
[65] Anne Stetler R,Leak RK,Gao Y,et al.The dynamics of the mitochondrial organelle as a potential therapeutic target[J]. Cereb Blood Flow Metab,2013,33(1):22-32.
[66] Senftleben U,Karin M.The IKK/NF-kappa B pathway[J].Crit Care Med,2002,30(1):S18-S26.
[67] Li Q,Verma IM. NF-kappaB and its regulation on the immune system [J]. Cell Mol Immunol, 2002, 1(5): 725-734.
[68] Silverman N,!Maniatis T. NF-kappa B signaling pathways in mammalian and insect innate immunity [J]. Genes & development, 2001, 15(18): 2321-2342.
[69] Karin M,Delhase M.The I kappa B kinase(IKK)and NF-kappa B: key elements of proinflammatory signalling[J].Semin Immunol,2000,12(1):85-98.
[70] Karin M,Lin A.NF-kappaB at the crossroads of Life and death[J].Nat Immunol,2002,3(3):221-227.
[71] 陈敬寅.褪黑素调节的自噬在蛛网膜下腔出血早期脑损伤中的作用及机制研究[D].杭州:浙江大学,2015.
[72] Jing CH.Role and mechanism of autophagy pathway in early brain injury after experimental subarachnoid hemorrhage[D].Hangzhou:Zhejiang University,2012.
[73] Liu Y,Shoji-Kawata S,Sumpter RM,et al.Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia[J].Proc Natl Acad Sci U S A,2013,110(51):20364-20371.
[74] Rubinsztein DC,Codogno P,Levine B.Autophagy modulation as a potential therapeutic target for diverse diseases[J].Nat Rev Drug Discov,2012,11(9):U84-709.
[75] Papadakis M,Hadley G,Xilouri M,et al.Tsc1(hamartin)confers neuroprotection against ischemia by inducing autophagy[J].Nat Med,2013,19(3):351-357.
[76] Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer's disease: the potential role of Beclin 1 interactome [J]. Prog Neurobiol, 2013, 106(107): 33-54.
[77] Ulusoy A,Kirik D.Can overexpression of parkin provide a novel strategy for neuroprotection in Parkinson's disease[J].Exp Neurol,2008,212(2):258-260.
[78] Chauhan A,Sharma U,Jagannathan NR,et al.Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats[J].Behav Brain Res,2011,225(2):603-609.
[79] Shoji-Kawata S,Sumpter R,Leveno M,et al.Identification of a candidate therapeutic autophagy-inducing peptide[J].Nature,2013,494(7436):201-206.
[80] Ashrafi G,Schwarz TL.The pathways of mitophagy for quality control and clearance of mitochondria[J].Cell Death Differ,2013,20(1):31-42.
[81] Isakson P,Holland P,Simonsen A.The role of ALFY in selective autophagy[J].Cell Death Differ,2013,20(1):12-20.
[82] Shaid S,Brandts CH,Serve H,et al.Ubiquitination and selective autophagy[J].Cell Death Differ,2013,20(1):21-30.

备注/Memo

备注/Memo:
基金项目:武汉市科技攻关计划项目(编号为2013060602010270)
更新日期/Last Update: 2017-04-20