[1]剧锦叶 王荔.Th17/Treg细胞在脑卒中后抑郁发病机制中的研究进展[J].卒中与神经疾病杂志,2019,26(03):358-361.[doi:10.3969/j.issn.1007-0478.2019.03.027]
点击复制

Th17/Treg细胞在脑卒中后抑郁发病机制中的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第26卷
期数:
2019年03期
页码:
358-361
栏目:
综 述
出版日期:
2019-06-25

文章信息/Info

文章编号:
1007-0478(2019)03-0358-04
作者:
剧锦叶 王荔
030001 太原,山西医科大学第二医院神经内科[剧锦叶 王荔(通信作者)]
分类号:
R743.3
DOI:
10.3969/j.issn.1007-0478.2019.03.027
文献标志码:
A

参考文献/References:

[1] Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages[J]. Nature Immunology, 2005, 6(11):1123-1132.
[2] Gaffen SL, Jain R, Garg AV, et al. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing[J]. Nature Reviews Immunology, 2014, 14(9):585-600.
[3] Ivanov II, Mckenzie BS, Zhou L, et al. The orphan nuclear receptor ROR gamma t directs the differentiation program of proinflammatory IL-17(+)T helper cells[J]. Cell, 2006, 126(6):1121-1133.
[4] Unutmaz D. Rorc2: the master of human Th17 cell programming[J]. European Journal of Immunology, 2009, 39(6):1452-1455.
[5] Veldhoen M, Hocking RJ, Atkins CJ, et al. TGFβ in the context of an inflammatory cytokine milieu supports De Novo differentiation of IL-17-Producing T cells[J]. Immunity, 2006, 24(2):179-189.
[6] Bettelli E, Carrier Y, Gao Wenda, et al. Reciprocal developmental pathways for the Generation of pathogenic effector TH17 and regulatory T cells[J]. Nature, 2006, 441(790):235-238.
[7] Zhang S, Takaku M, Zou LY, et al. Reversing SKI-SMAD4-mediated suppression is essential for T(H)17 cell differentiation[J]. Nature, 2017, 551(7678):105.
[8] Zhou L, Ivanov II, Spolski R, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways[J]. Nature Immunology, 2007, 8(9):967-974.
[9] Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by IL-1 signaling[J]. Journal of Immunology, 2009, 182(1):576-587.
[10] Mcgeachy MJ, Bak-Jensen KS, Chen Y, et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology[J]. Nature Immunology, 2007, 8(12):1390-1397.
[11] Lee YJ, Awasthi A, Yosef N, et al. Induction and molecular signature of pathogenic TH17 cells[J]. Nature Immunology, 2012, 13(10):991-999.
[12] Toker A, Engelbert D, Garg G, et al. Active demethylation of the Foxp3 locus leads to the Generation of stable regulatory T cells within the thymus[J]. Journal of Immunology, 2013, 190(7):3180-3188.
[13] Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse[J]. Nature Genetics, 2001, 27(1):68-73.
[14] Ghosh S, Roy-Chowdhuris R, Kang K, et al. The transcription factor Foxp1 preserves integrity of an active Foxp3 locus in extrathymic Tregcells[J]. Nat Commun2018 Oct 26, 9(1):4473.
[15] Wu C, Chen ZJ, Dardalhon V, et al. The transcription factor musculin promotes the unidirectional development of peripheral T-reg cells by suppressing the T(H)2 transcriptional program[J]. Nature Immunology, 2017, 18(3):344-353.
[16] Lee W, Kim HS, Hwang SS, et al. The transcription factor Batf3 inhibits the differentiation of regulatory T cells in the periphery[J]. Experimental and Molecular Medicine, 2017, 49(11):e393.
[17] Goldstein JD, Perol L, Zaragoza BA, et al. Role of cytokines in tymus- versus peripherally derived-regulatory T cell differentiation and function[J]. Frontiers in Immunology, 2013, 4:155.
[18] Li XD, Liang YQ, Leblanc M, et al. Function of a Foxp3 cis-Element in protecting regulatory T cell identity[J]. Cell, 2014, 158(4):734-748.
[19] Nair VS, Oh KI. Down-regulation of Tet2 prevents TSDR demethylation in IL2 deficient regulatory T cells[J]. Biochemical and Biophysical Research Communications, 2014, 450(1):918-924.
[20] Yang RL, Qu CY, Zhou Y, et al. Hydrogen sulfide promotes Tet1-and Tet2-Mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis[J]. Immunity, 2015, 43(2):251-263.
[21] Zhang DF, Chia C, Jiao Xu-e, et al. D-mannose induces regulatory T cells and suppresses immunopathology[J]. Nature Medicine, 2017, 23(9):1036.
[22] Zhou L, Lopes JE, Chong MM, et al. TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function[J]. Nature, 2008, 453(7192):236-240.
[23] Mucida D, Park Y, Kim G, et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid[J]. Science(New York, N.Y.), 2007, 317(5835):256-260.
[24] Elali A, Leblanc NJ. The role of monocytes in ischemic stroke pathobiology: new avenues to explore[J]. Frontiers in Aging Neuroscience, 2016, 8(29):29.
[25] Rothenburg LS, Herrmann N, Swardfager W A, et al. The relationship between inflammatory markers and post stroke cognitive impairment[J]. Journal of Geriatric Psychiatry and Neurology, 2010, 23(3):199-205.
[26] Aulin J, Siegbahn A, Hijazi Z, et al. Interleukin-6 and C-reactive protein and risk for death and cardiovascular events in patients with atrial fibrillation[J]. American Heart Journal, 2015, 170(6):1151-1160.
[27] Esenwa CC, Elkind MS. Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke[J]. Nature Reviews Neurology, 2016, 12(10):594-604.
[28] Fr YSHOV HM, Bj Rnerem, Engstad T, et al. Elevated inflammatory markers predict mortality in long-term ischemic stroke-survivors: a population-based prospective study[J]. Aging Clinical and Experimental Research, 2017, 29(3):379-385.
[29] Boehme AK, Mcclure LA, Zhang Y, et al. Inflammatory markers and outcomes after lacunar stroke levels of inflammatory markers in treatment of stroke study[J]. Stroke; a Journal of Cerebral Circulation, 2016, 47(3):659-667.
[30] Zuo L, Shi LH, Yan FL. The reciprocal interaction of sympathetic nervous system and cAMP-PKA-NF-kB pathway in immune suppression after experimental stroke[J]. Neuroscience Letters, 2016, 627:205-210.
[31] Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells[J]. Nature Medicine, 2016, 22(5):516-523.
[32] Abbas A, Gregersen I, Holm S, et al. Interleukin 23 levels are increased in carotid atherosclerosis possible role for the interleukin 23/interleukin 17 axis[J]. Stroke, 2015, 46(3):793.
[33] Zheng Y, Zhong D, Chen H, et al. Pivotal role of cerebral interleukin-23 during immunologic injury in delayed cerebral ischemia in mice[J]. Neuroscience, 2015, 290:321-331.
[34] Zhao HR, Wan LH, Chen Y, et al. FasL incapacitation alleviates CD4(+)T cells-induced brain injury through remodeling of microglia polarization in mouse ischemic stroke[J]. Journal of Neuroimmunology, 2018, 318:36-44.
[35] Li Q, Wang YP, Yu F, et al. Peripheral Th17/Treg imbalance in patients with atherosclerotic cerebral infarction[J]. International Journal of Clinical and Experimental Pathology, 2013, 6(6):1015-1027.
[36] Dolati S, Ahmadi M, Khalili M, et al. Peripheral Th17/Treg imbalance in elderly patients with ischemic stroke[J]. Neurological Sciences, 2018, 39(4):647-654.
[37] Hu YH, Zheng YH, Wu Y, et al. Imbalance between IL-17A-Producing Cells and Regulatory T Cells during Ischemic Stroke[J]. Mediators of Inflammation, 2014(2):813045.
[38] Liu CS, Adibfar A, Herrmann N, et al. Evidence for Inflammation-Associated Depression[J]. Curr Top Behav Neurosci, 2016, 31:3-30.
[39] Müller N, Myint AM, Schwarz MJ. Inflammatory Biomarkers And Depression[J]. Neurotoxicity Research, 2011, 19(2):308-318.
[40] Alshogran OY, Khalil AA, Oweis AO, et al. Association of brain-derived neurotrophic factor and interleukin-6 serum levels with depressive and anxiety symptoms in hemodialysis patients[J]. GENERAL HOSPITAL PSYCHIATRY, 2018, 53:25-31.
[41] Davami MH, Baharlou R, Ahmadi VA, et al. Elevated IL-17 and TGF-β serum levels: a positive correlation between t-helper 17 Cell-Related Pro-Inflammatory responses with major depressive disorder[J]. Basic Clin Neurosci, 2016, 7(2):137-142.
[42] Hong M, Zheng J, Ding ZY, et al. Imbalance between Th17 and Treg Cells May Play an Important Role in the Development of Chronic Unpredictable Mild Stress-Induced Depression in Mice[J]. Neuroimmunomodulation, 2013, 20(1):39-50.
[43] Beurel E, Harrington LE, Jope R S. Inflammatory Th17 cells promote depression-like behavior in mice[J]. Biological Psychiatry, 2013, 73(7):622.
[44] Beurel E, Lowell JA. Th17 cells in depression[J]. Brain Behavior and Immunity, 2018, 69:28-34.
[45] Su Jian-an, Chou SY, Tsai CS, et al. Cytokine changes in the pathophysiology of poststroke depression[J]. General Hospital Psychiatry, 2012, 34(1):35-39.
[46] Jiao JT, Cheng C, Ma YJ, et al. Association between inflammatory cytokines and the risk of post-stroke depression, and the effect of depression on outcomes of patients with ischemic stroke in a 2-year prospective study[J]. Experimental and Therapeutic Medicine, 2016, 12(3):1591-1598.
[47] Mu YY, Wang Z, Zhou J, et al. Correlations of post-stroke depression with inflammatory response factors[J]. Iranian Journal of Public Health, 2018, 47(7):988-993.
[48] Kim JM, Stewart R, Kim SW, et al. Associations of cytokine gene polymorphisms with post-stroke depression[J]. World Journal of Biological Psychiatry, 2012, 13(8):579-587.
[49] Yasuno F, Taguchi A, Yamamoto A, et al. Microstructural abnormality in white matter, regulatory T lymphocytes, and depressive symptoms after stroke[J]. Psychogeriatrics:the Official Journal of the Japanese Psychogeriatric Society, 2014, 14(4):213-221.

备注/Memo

备注/Memo:
基金项目:省科技厅科研项目(编号为2017065)
更新日期/Last Update: 2019-06-25