[1]卢帆赵敬堃赵继巍等.蛋白质组学和信号通路参与阿尔茨海默病的机理研究[J].卒中与神经疾病杂志,2021,28(04):468-472.[doi:10.3969/j.issn.1007-0478.2021.04.020]
点击复制

蛋白质组学和信号通路参与阿尔茨海默病的机理研究()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第28卷
期数:
2021年04期
页码:
468-472
栏目:
综述
出版日期:
2021-08-24

文章信息/Info

文章编号:
1007-0478(2021)04-0468-05
作者:
卢帆赵敬堃赵继巍等
分类号:
R742
DOI:
10.3969/j.issn.1007-0478.2021.04.020
文献标志码:
A

参考文献/References:

[1] Polidori MC, Pientka L, Mecocci P. A review of the major vascular risk factors related to Alzheimer’s disease[J].Alzheimer[J]. s Dis, 2012, 32(3): 521-530.
[2] Mattson MP, Maudsley S, Martin B. A neural signaling triumvirate that influences ageing and age-related disease: insulin/IGF-1, BDNF and serotonin[J]. Ageing Res Rev, 2004, 3(4): 445-464.
[3] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium[J]. Electrophoresis, 1995, 16(7): 1090-1094.
[4] Sepp??TT, Nerg O, Koivisto AM, et al.Zetterberg H et al[Z],2012:1568-1575.
[5] Wang H, Dey KK, Chen PC, et al. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease[J]. Mol Neurodegener, 2020, 15(1): 43.
[6] Sathe G, Albert M, Darrow J, et al. Quantitative proteomic analysis of the frontal cortex in Alzheimer’s disease[J]. J Neurochem, 2020, doi:10.1111/jnc.15116.
[7] Xu F, Na L, Li Y, et al. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours[J]. Cell Biosci, 2020, 10(1): 54.
[8] Miao Z, Zhang XY. The role of PI3K/AKT/FOXO signaling in psoriasis[J]. Arch Dermatol Res, 2019, 311(2): 83-91.
[9] Szymonowicz K, Oeck S, Malewicz NM, et al. New insights into protein kinase B/Akt signaling: role of localized Akt activation and Compartment-Specific target proteins for the cellular radiation response[J]. Cancers(Basel), 2018, 10(3): E78.
[10] Kim B, Feldman EL. Insulin resistance in the nervous system[J]. Trends in Endocrinology & Metabolism, 2012, 23(3): 133-141.
[11] Howes AL, Arthur JF, Zhang T, et al. Akt-mediated cardiomyocyte survival pathways are compromised by G alpha q-induced phosphoinositide 4,5-bisphosphate depletion[J]. J Biol Chem, 2003, 278(41): 40343-40351.
[12] Ksiezak-Reding H, Pyo HK, Feinstein B, et al. Akt/PKB kinase phosphorylates separately Thr212 and Ser214 of tau protein in vitro[J]. Biochim Biophys Acta, 2003, 1639(3): 159-168.
[13] Do TD, Economou NJ, Chamas A, et al. Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity[J]. J Phys Chem B, 2014, 118(38): 11220-11230.
[14] Kitagishi Y, Nakanishi A, Ogura Y, et al. Dietary regulation of PI3K/AKT/GSK-3β pathway in Alzheimer’s disease[J]. Alzheimers Res Ther, 2014, 6(3): 35.
[15] Harper SJ, Wilkie N. MAPKs: new targets for neurodegeneration[J]. Expert Opin Ther Targets, 2003, 7(2): 187-200.
[16] Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update[J]. Arch Toxicol, 2015, 89(6): 867-882.
[17] Fang F, Yu Q, Arancio O, et al. RAGE mediates Aβ accumulation in a mouse model of Alzheimer’s disease via modulation of β- and γ-secretase activity[J]. Hum Mol Genet, 2018, 27(6): 1002-1014.
[18] Kheiri G, Dolatshahi M, Rahmani F, et al. Role of p38/MAPKs in alzheimer’s disease: implications for amyloid beta toxicity targeted therapy[J]. Rev Neurosci, 2018, 30(1): 9-30.
[19] Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo[J]. Nature, 2002, 416(6880): 535-539.
[20] Wang Q, Walsh DM, Rowan MJ, et al. Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5[J]. J Neurosci, 2004, 24(13): 3370-3378.
[21] Snyder EM, Nong Y, Almeida CG, et al. Regulation of NMDA receptor trafficking by amyloid-beta[J]. Nat Neurosci, 2005, 8(8): 1051-1058.
[22] Origlia N, Bonadonna C, Rosellini A, et al. Microglial receptor for advanced glycation end product-dependent signal pathway drives beta-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex[J]. J Neurosci, 2010, 30(34): 11414-11425.
[23] Atzori C, Ghetti B, Piva R, et al. Activation of the JNK/p38 pathway occurs in diseases characterized by tau protein pathology and is related to tau phosphorylation but not to apoptosis[J]. J Neuropathol Exp Neurol, 2001, 60(12): 1190-1197.
[24] Ferrer I, Blanco R, Carmona M, et al. Active, phosphorylation-dependent mitogen-activated protein kinase(MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase(SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies[J]. J Neural Transm, 2001, 108(12): 1383-1396.
[25] Zhu X, Rottkamp CA, Hartzler A, et al. Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease[J]. J Neurochem, 2001, 79(2): 311-318.
[26] Feijoo C, Campbell DG, Jakes R, et al. Evidence that phosphorylation of the microtubule-associated protein Tau by SAPK4/p38delta at Thr50 promotes microtubule assembly[J]. J Cell Sci, 2005, 118(Pt 2): 397-408.
[27] Jenkins SM, Zinnerman M, Garner C, et al. Modulation of tau phosphorylation and intracellular localization by cellular stress[J]. Biochem J, 2000, 345 Pt 2(Pt 2): 263-270.
[28] Zhu X, Lee HG, Raina AK, et al. The role of mitogen-activated protein kinase pathways in Alzheimer’s disease[J]. Neurosignals, 2002, 11(5): 270-281.
[29] Gu Y, Ma LJ, Bai XX, et al. Mitogen-activated protein kinase phosphatase 1 protects PC12 cells from amyloid beta-induced neurotoxicity[J]. Neural Regen Res, 2018, 13(10): 1842-1850.
[30] Yarza R, Vela S, Solas M, et al. c-Jun n-terminal kinase(JNK)signaling as a therapeutic target for alzheimer’s disease[J]. Front Pharmacol, 2015, 6:321.
[31] Buccarello L, Sclip A, Sacchi M, et al. The c-jun N-terminal kinase plays a key role in ocular degenerative changes in a mouse model of Alzheimer disease suggesting a correlation between ocular and brain pathologies[J]. Oncotarget, 2017, 8(47): 83038-83051.
[32] Ng LF, Kaur P, Bunnag N, et al. WNT signaling in disease[J]. Cells, 2019, 8(8): 826.
[33] Nusse R, Clevers H. Wnt/β-Catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
[34] Hao HX, Xie Y, Zhang Y, et al. ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner[J]. Nature, 2012, 485(7397): 195-200.
[35] Koo BK, Spit M, Jordens I, et al. Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors[J]. Nature, 2012, 488(7413): 665-669.
[36] Jiang X, Charlat O, Zamponi R, et al. Dishevelled promotes Wnt receptor degradation through recruitment of ZNRF3/RNF43 E3 ubiquitin ligases[J]. Mol Cell, 2015, 58(3): 522-533.
[37] De Lau W, Peng WC, Gros P, et al. The R-spondin/Lgr5/Rnf43 module: regulator of Wnt signal strength[J]. Genes Dev, 2014, 28(4): 305-316.
[38] Jia L, Pi?-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease[J]. Mol Brain, 2019, 12(1): 104.
[39] Wang J, Jing Y, Song L, et al. Neuroprotective effects of Wnt/β-catenin signaling pathway against Aβ -induced tau protein over-phosphorylation in PC12 cells[J]. Biochem Biophys Res Commun, 2016, 471(4): 628-632.
[40] Jiao SS, Shen LL, Zhu C, et al. Brain-derived neurotrophic factor protects against tau-related neurodegeneration of Alzheimer’s disease[J]. Transl Psychiatry, 2016, 6(10): e907.
[41] Balietti M, Giuli C, Conti F. Peripheral blood Brain-Derived neurotrophic factor as a biomarker of alzheimer’s disease: are there methodological biases?[J]. Mol Neurobiol, 2018, 55(8): 6661-6672.
[42] Ng TS, Ho CH, Tam WS, et al. Decreased serum Brain-Derived neurotrophic factor(BDNF)levels in patients with alzheimer’s disease(AD):A systematic review and Meta-Analysis[J]. Int J Mol Sci, 2019, 20(2): 257.
[43] Xu X, Yang H, Yf L, et al. Neuronal abelson helper integration site-1(Ahi1)deficiency in mice alters TrkB signaling with a depressive phenotype[J]. Proc Natl Acad Sci U S A, 2010, 107(44): 19126-19131.
[44] Wang ZH, Xiang J, Liu X, et al. Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-Secretase by upregulating C/EBPβ in alzheimer’s disease[J]. Cell Rep, 2019, 28(3): 655-669.e5.
[45] Wang ZF, Li Q, Liu SB, et al. Aspirin-triggered Lipoxin A4 attenuates mechanical allodynia in association with inhibiting spinal JAK2/STAT3 signaling in neuropathic pain in rats[J]. Neuroscience, 2014, 273(273): 65-78.
[46] Wang ZH, Gong K, Liu X, et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer’s disease[J]. Nat Commun, 2018, 9(1): 1784.
[47] Wang ZH, Wu W, Kang SS, et al. BDNF inhibits neurodegenerative disease-associated asparaginyl endopeptidase activity via phosphorylation by AKT[J]. JCI Insight, 2018, 3(16): 99007.
[48] Zhang F, Kang Z, Li W, et al. Roles of brain-derived neurotrophic factor/tropomyosin-related kinase B(BDNF/TrkB)signalling in Alzheimer’s disease[J]. J Clin Neurosci, 2012, 19(7): 946-949.

备注/Memo

备注/Memo:
作者单位:150001 哈尔滨医科大学附属第一医院神经内科[卢帆 赵敬堃(通信作者)赵继巍 于宏丽]
更新日期/Last Update: 1900-01-01