[1]方旋 张敏 黄珊 黄宽宽 恽文伟.微小RNAs在脑微出血中的研究进展[J].卒中与神经疾病杂志,2021,28(05):585-588.[doi:10.3969/j.issn.1007-0478.2021.05.019]
点击复制

微小RNAs在脑微出血中的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第28卷
期数:
2021年05期
页码:
585-588
栏目:
综述
出版日期:
2021-10-25

文章信息/Info

文章编号:
1007-0478(2021)05-0585-04
作者:
方旋 张敏 黄珊 黄宽宽 恽文伟
116044 大连医科大学研究生院(方旋 黄珊); 南京医科大学附属常州市第二人民医院神经内科[张敏 黄宽宽 恽文伟(通信作者)]
分类号:
R743.34
DOI:
10.3969/j.issn.1007-0478.2021.05.019
文献标志码:
A

参考文献/References:

[1] Haller S, Vernooij MW, Kuijer JPA, et al. Cerebral microbleeds: imaging and clinical significance[J]. Radiology, 2018, 287(1):11-28.
[2] Ungvari Z, Tarantini S, Kirkpatrick AC, et al. Cerebral microhemorrhages: mechanisms, Consequences, and prevention[J]. Am J Physiol Heart Circ Physiol, 2017, 312(6): H1128-H1143.
[3] Fisher M, French S, Ji P, et al. Cerebral microbleeds in the elderly: a pathological analysis[J]. Stroke, 2010, 41(12): 2782-2785.
[4] Cordonnier C, Potter GM, Jackson CA, et al. Improving interrater agreement about brain microbleeds: development of the brain observer MicroBleed scale(BOMBS)[J]. Stroke, 2009, 40(1): 94-99.
[5] Ding J, Siguresson S, Jónsson PV, et al. Space and location of cerebral microbleeds, cognitive decline, and dementia in the community[J]. Neurology, 2017, 88(22): 2089-2097.
[6] Cordonnier C. Al-Shahi salman R,wardlaw J[J]. Spontaneous brain microbleeds:systematic review,subgroup analyses and standards for study design and reporting.Brain, 2007, 130(Pt 8): 1988-2003.
[7] Romero JR, Preis SR, Beiser A, et al. Risk factors, stroke prevention treatments, and prevalence of cerebral microbleeds in the Framingham Heart Study[J]. Stroke, 2014, 45(5): 1492-1494.
[8] Fisher M. Cerebral microbleeds and thrombolysis: clinical Consequences and mechanistic implications[J]. JAMA Neurol, 2016, 73(6): 632-635.
[9] Slota JA, Booth SA. MicroRNAs in neuroinflammation: implications in disease pathogenesis, biomarker discovery and therapeutic applications[J]. Noncoding RNA, 2019, 5(2): 35.
[10] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4encodes small RNAs with antisense complementarity to lin-14[J].Cell, 1993, 75(5): 843-854.
[11] Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs[J]. Genome Res, 2009, 19(1): 92-105.
[12] Gebert L, Macrae IJ. Regulation of microRNA function in animals[J]. Nat Rev Mol Cell Biol, 2019, 20(1): 21-37.
[13] O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation[J]. Front Endocrinol(Lausanne), 2018,9:402.
[14] Schreiber S, Bueche CZ, Garz C, et al. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model[J]. Exp Transl Stroke Med, 2013, 5(1): 4.
[15] Liu Y, Pan Q, Zhao Y, et al. MicroRNA-155 regulates ROS production, NO Generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions[J]. J Cell Biochem, 2015, 116(12): 2870-2881.
[16] Burek M, K?ig A, Lang M, et al. Hypoxia-Induced MicroRNA-212/132 alter Blood-Brain barrier integrity through inhibition of tight Junction-Associated proteins in human and mouse brain microvascular endothelial cells[J]. Transl Stroke Res, 2019, 10(6): 672-683.
[17] Wiseman S, Marlborough F, Doubal F, et al. Blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus Non-Lacunar stroke and Non-Stroke: systematic review and Meta-Analysis[J]. Cerebrovascular Diseases, 2014, 37(1): 64-75.
[18] Liu WJ, Cai H, Lin MQ, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1[J]. Exp Cell Res, 2016, 343(2): 248-257.
[19] Fu X, Niu T, Li X.MicroRNA-126-3p attenuates intracerebral Hemorrhage-Induced Blood-Brain barrier disruption by regulating VCAM-1 expression[Z],2019:00866.
[20] Xintong Ge WL, Zhang JN,Journal of Neurotrauma.Apr 2019.1291-1305.Increased miR-21-3p in injured brain microvascular endothelial cells following traumatic brain injury aggravates blood-brain barrier damage by promoting cellular apoptosis and inflammation through targeting MAT2B[S],2018:5728.
[21] Zhao J, Ou SL, Wang WY, et al. MicroRNA-1907 enhances atherosclerosis-associated endothelial cell apoptosis by suppressing Bcl-2[J]. Am J Transl Res, 2017, 9(7): 3433-3442.
[22] Toyama K, Spin JM, Tsao PS. Role of microRNAs on blood brain barrier dysfunction in vascular cognitive impairment[J]. Curr Drug Deliv, 2017, 14(6): 744-757.
[23] Mcmillin MA, Frampton GA, Seiwell AP, et al. TGFβ1 exacerbates blood-brain barrier permeability in a mouse model of hepatic encephalopathy via upregulation of MMP9 and downregulation of claudin-5[J]. Lab Invest, 2015, 95(8): 903-913.
[24] Fang Z, He QW, Li Q, et al. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats[J]. FASEB Journal, 2016, 30(6): 2097-2107.
[25] Ma Q, Dasgupta C, Li Y, et al. MicroRNA-210 suppresses junction proteins and disrupts Blood-Brain barrier integrity in neonatal rat Hypoxic-Ischemic brain injury[J]. Int J Mol Sci, 2017, 18(7): 1356.
[26] Sawant D, Tharakan B, Hunter FA, et al. Role of β-catenin in regulating microvascular endothelial cell hyperpermeability[J]. J Trauma, 2011, 70(2): 481-487; discussion 487-8.
[27] Gu W, Zhan H, Zhou XY, et al. MicroRNA-22 regulates inflammation and angiogenesis via targeting VE-cadherin[J]. FEBS Lett, 2017, 591(3): 513-526.
[28] Rutnam ZJ, Wight TN, Yang BB. miRNAs regulate expression and function of extracellular matrix molecules[J]. Matrix Biology, 2013, 32(2): 74-85.
[29] Wang J, Fields J, Zhao C, et al. Role of Nrf2 in protection against intracerebral hemorrhage injury in mice[J]. Free Radic Biol Med, 2007, 43(3): 408-414.
[30] Wakisaka Y, Chu Y, Miller JD, et al. Critical role for Copper/zinc-superoxide dismutase in preventing spontaneous intracerebral hemorrhage during acute and chronic hypertension in mice[J]. Stroke, 2010, 41(4): 790-797.
[31] Yao X, Wang Y, Zhang D. microRNA-21 confers neuroprotection against cerebral Ischemia-Reperfusion injury and alleviates Blood-Brain barrier disruption in rats via the MAPK signaling pathway[J]. J Mol Neurosci, 2018, 65(1): 43-53.
[32] Che F, Du HS, Zhang WD, et al. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF-κB and VEGF pathway[J]. Mol Med Rep, 2018, 17(2): 2724-2730.

备注/Memo

备注/Memo:
基金项目:江苏省卫生健康委面上项目(H2019051); 常州市卫生健康青苗人才培养工程(CZQM2020073)
更新日期/Last Update: 1900-01-01