[1]何佳 穆琼.脑出血患者免疫相关治疗靶点的研究进展[J].卒中与神经疾病杂志,2022,29(03):281-283.[doi:10.3969/j.issn.1007-0478.2022.03.017]
点击复制

脑出血患者免疫相关治疗靶点的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第29卷
期数:
2022年03期
页码:
281-283
栏目:
综 述
出版日期:
2022-06-25

文章信息/Info

文章编号:
1007-0478(2022)03-0281-04
作者:
何佳 穆琼
550004 贵阳,贵州医科大学附属医院
分类号:
R743.34
DOI:
10.3969/j.issn.1007-0478.2022.03.017
文献标志码:
A

参考文献/References:

[1] Zhu H, Wang Z, Yu J, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage[J]. Progress in Neurobiol, 2019, 178: 101610.
[2] Cordonnier C, Demchuk A, Ziai W, et al. Intracerebral haemorrhage: current approaches to acute management[J]. Lancet, 2018, 392(1154): 1257-1268.
[3] Morgenstern LB, Hemphill IJ, Anderson C, et al. Guidelines for the management of spontaneous intracerebral hemorrhage a guideline for healthcare professionals from the American heart association/American stroke association[J]. Stroke, 2010, 41(9): 2108-2129.
[4] Lan X, Han X, Li Q, et al. Modulators of microglial activation and po-larization after intracerebral haemorrhage〔J〕[J]. Nat Rev Neurol, 2017, 13(7): 420-433.
[5] Zhao J, Chen Z, Xi G, et al. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats[J]. Transl Stroke Res, 2014, 5(5): 586-594.
[6] Keep RF, Hua Y, Xi GH. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets[J]. Lancet Neurol, 2012, 11(8): 720-731.
[7] Aoki M.Sphingosine-1-phosphate signaling in immune cells and inflflammation:roles and therapeutic potential[Z],2016:8606878.
[8] Takabe K, Spiegel S. Export of sphingosine-1-phosphate and cancer progression[J]. J Lipid Res, 2014, 55(9): 1839-1846.
[9] Li YJ, Chang GQ, Liu Y, et al. Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage[J]. Neurosci Bull, 2015, 31(6): 755-762.
[10] Ontaneda D, Cohen JA. Potential mechanisms of effificacy and adverse effects in the use of fifingolimod(FTY720)[J]. Expert Rev Clin Pharmacol, 2011, 4(5): 567-570.
[11] Marfia G, Navone SE, Hadi L, et al. The adipose mesenchymal stem cell secretome inhibits inflammatory responses of microglia: evidence for an involvement of sphingosine-1-Phosphate signalling[J]. Stem Cells Dev, 2016, 25(14): 1095-1107.
[12] Serdar M, Herz J, Kempe K, et al. Fingolimod protects against neonatal white matter damage and long-term cognitive deficits caused by hyperoxia[J]. Brain Behav Immun, 2016, 52: 106-119.
[13] Rolland W2, Manaenko A, Lekic T, et al. FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice[J]. Acta Neurochir Suppl, 2011, 111: 213-217.
[14] Vogelgesang A. Siponimod(BAF312)treatment reduces brain infifiltration but not lesion volume in middle-aged mice in experimental stroke[J]. Stroke, 2019, 50(5): 1224-31.
[15] Effificacy, safety and tolerability of BAF312 compared to placebo in patients with intracerebral hemorrhage(ICH)[J]. Available from:https://ClinicalTrials.gov/show/ NCT03338998
[16] Kim GS, Yang L,Zhang GQ, et al. Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke[J]. Nat Commun, 2015,6(8): 7893.
[17] Sun N, Shen Y, Han W, et al. Selective sphingosine-1-Phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage[J]. Stroke, 2016, 47(7): 1899-1906.
[18] Gang X, Han Q, Zhao X, et al. Dynamic changes in Toll-Like receptor 4 in human perihematoma tissue after intracerebral hemorrhage[J]. World Neurosurg, 2018, 118(18): e593-e600.
[19] Wang Y, Su L, Morin MD, et al. TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS[J]. Proc Natl Acad Sci U S A, 2016, 113(7): E884-E893.
[20] Sansing LH, Harris TH, Welsh FA, et al. Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage[J]. Ann Neurol, 2011, 70(4): 646-656.
[21] Chang CZ, Wu SC, Kwan AL. A purine antimetabolite attenuates toll-like receptor-2, -4, and subarachnoid hemorrhage-induced brain apoptosis[J]. J Surg Res, 2015, 199(2): 676-687.
[22] Lin S, Yin Q,Zhong Q, et al. Heme activates TLR4-mediated inflflammatory injury via MyD88/ TRIF signaling pathway in intracerebral hemorrhage[J]. J Neuroinflflammation, 2012, 9(46):1-14.
[23] Taetzsch T, Levesque S, Mcgraw C, et al. Redox regulation of NF-κB p50 and M1 polarization in microglia[J]. Glia, 2015, 63(3): 423-440.
[24] Wang YC, Wang PF, Fang H, et al. Toll-like receptor 4 antagonist attenuates intracerebral hemorrhage-induced brain injury[J]. Stroke, 2013, 44(9): 2545-2552.
[25] Han L, Liu DL, Zeng QK, et al. The neuroprotective effects and probable mechanisms of Ligustilide and its degradative products on intracerebral hemorrhage in mice[J]. Int Immunopharmacol, 2018, 63: 43-57.
[26] Zhong Q, Zhou K, Liang QL, et al. Interleukin-23 secreted by activated macrophages drives γδT cell production of interleukin-17 to aggravate secondary injury after intracerebral hemorrhage[J]. J Am Heart Assoc, 2016, 5(10): e004340.
[27] Wang Y, Jiang S, Xiao J, et al. Sparstolonin B improves neurological outcomes following intracerebral hemorrhage in mice[J]. Exp Ther Med, 2018, 15(6): 5436-5442.
[28] Chu K, Jeong SW, Jung KH, et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death[J]. J Cereb Blood Flow Metab, 2004, 24(8): 926-933.
[29] Park HK, Lee SH, Chu K, et al. Effects of celecoxib on volumes of hematoma and edema in patients with primary intracerebral hemorrhage[J]. J Neurol Sci, 2009, 279(1/2): 43-46.
[30] Hu X, Tao C, Gan Q, et al. Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets[J]. Oxid Med Cell Longev, 2016: 3215391.
[31] Sharpe AH, Pauken KE. The diverse functions of the PD1 inhibitory pathway[J]. Nat Rev Immunol, 2018, 18(3): 153-167.
[32] Han R, Luo J, Shi Y, et al. PD-L1(programmed death ligand 1)protects against experimental intracerebral Hemorrhage-Induced brain injury[J]. Stroke, 2017, 48(8): 2255-2262.
[33] Yuan B. Programmed death(PD)-1 attenuates macrophage activation and brain inflflammation via regulation of fifibrinogen-like protein 2(Fgl-2)after intracerebral hemorrhage in mice[J]. Immunol Lett, 2016(179): 114-21.
[34] Ma L. Blocking B7-1/CD28 pathway diminished long-range brain damage by regulating the immune and inflflammatory responses in a mouse model of intracerebral hemorrhage[J]. Neurochem Res, 2016, 41(7): 1673-83.
[35] Perez DN, Sobrino T, Silva Y, et al. Iron related brain dam-age in patients with intracerebral hemorrhage〔J〕[J]. Stroke, 2010, 41(4): 810-813.
[36] Shi H, Zheng K, Su Z, et al. Sinomenine enhances microglia M2po-larization and attenuates inflammatory injury in intracerebral hemor-rhage〔J〕[J]. Neuroimmunology, 2016, 299(1): 28-34.
[37] Zhao F, Xi G, Liu W, et al. Minocycline attenuates Iron-Induced brain injury[J]. Acta Neurochir Suppl, 2016, 121: 361-365.
[38] Wu ZH, Zou X, Zhu W, et al. Minocycline is effective in intracerebral hemorrhage by inhibition of apoptosis and autophagy[J]. J Neurol Sci, 2016, 371: 88-95.
[39] Chang JJ, Kim-Tenser M, Emanuel BA, et al. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study[J]. European Journal of Neurology, 2017, 24(11): 1384-1391.
[40] Selim M. Deferoxamine mesylate in patients with intracerebral haemorrhage(i-DEF):multicentre,randomised,placebo-controlled,double-blindphase 2trial[J]. Lancet Neurol, 2019, 18(5): 428-438.
[41] Nakae S, Iikura M, Suto H, et al. TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells[J]. Blood, 2007, 110(7): 2565-2568.
[42] Anderson AC, Anderson DE, Bregoli L, et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells[J]. Science, 2007, 318(5853): 1141-1143.
[43] Ndhlovu LC, Lopez-Verges S, Barbour JD, et al. Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity[J]. Blood, 2012, 119(16): 3734-3743.
[44] Liu X, You J, Zhao D, et al. Dysregulated expression of T cell immunoglobulin and mucin domain 3 is associated with the disease severity and the outcome of patients with spontaneous intracerebral hemorrhage[J]. Clin Biochem, 2013, 46(15): 1502-1508.
[45] Yu AY, Zhang XJ, Li M, et al. Tim-3 enhances brain inflammation by promoting M1 macrophage polarization following intracerebral hemorrhage in mice[J]. Int Immunopharmacol, 2017, 53: 143-148.
[46] Tao X, Xie L, Duan C, et al. Up-Regulation of interferon regulatory factor 3 involves in neuronal apoptosis after intracerebral hemorrhage in adult rats[J]. Neurochem Res, 2016, 41(11): 2937-2947.
[47] Smits HH, Van Beelen AJ, Hessle C, et al. Commensal gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development[J]. Eur J Immunol, 2004, 34(5): 1371-1380.
[48] Zhao X, Ting SM, Liu CH, et al. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage[J]. Nat Commun, 2017, 8(1): 602.

备注/Memo

备注/Memo:
基金项目:贵州医科大学附属医院国家自然科学基金培育项目[(2020)-2]; 贵州省卫生健康委项目(gzwkj2021-030)
更新日期/Last Update: 1900-01-01