[1]王璐璐,董露露,王天俊.外泌体MicroRNA在亨廷顿舞蹈病发生发展中的作用[J].卒中与神经疾病杂志,2022,29(04):397-400.[doi:10.3969/j.issn.1007-0478.2022.04.021]
点击复制

外泌体MicroRNA在亨廷顿舞蹈病发生发展中的作用()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第29卷
期数:
2022年04期
页码:
397-400
栏目:
综述
出版日期:
2022-09-10

文章信息/Info

文章编号:
1007-0478(2022)04-0397-03
作者:
王璐璐董露露王天俊
050001 石家庄,河北省人民医院神经内科[王璐璐(华北理工大学研究生学院)董露露(河北北方学院研究生院)王天俊(通信作者)]
分类号:
R742.2
DOI:
10.3969/j.issn.1007-0478.2022.04.021
文献标志码:
A

参考文献/References:

[1] McColgan P, Tabrizi SJ. Huntington's disease: a clinical review[J]. Eur J Neurol, 2018, 25(1): 24-34.
[2] Chen BY, Sung C, Chen C,et al. Advances in exosomes technology[J]. Clin Chim Acta, 2019, 493(4): 14-19.
[3] Pegtel DM, Gould S. Exosomes[J]. Annu Rev Biochem, 2019, 88(9): 487-514.
[4] Kalluri R, LeBleu V. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977.
[5] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends[J]. J Cell Biol, 2013, 200(4): 373-383.
[6] Ragusa M, Barbagallo C, Cirnigliaro M, et al. Asymmetric RNA distribution among cells and their secreted exosomes: biomedical meaning and considerations on diagnostic applications[J]. Front Mol Biosci, 2017, 4(4): 66.
[7] Qing L, Chen W, Tang J, et al. Exosomes and their MicroRNA cargo: new players in peripheral nerve regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9): 765-776.
[8] Zhang X, Abels ER, Redzic JS, et al. Potential transfer of polyglutamine and CAG-repeat RNA in extracellular vesicles in Huntington's disease: background and evaluation in cell culture[J]. Cell Mol Neurobiol, 2016, 36(3): 459-470.
[9] Hong Y, Zhao T, Li XJ, et al. Mutant huntingtin inhibits alphaB-Crystallin expression and impairs exosome secretion from astrocytes[J]. J Neurosci, 2017, 37(39): 9550-9563.
[10] Jeon I, Cicchetti F, Cisbani G, et al. Human-to-mouse prion-like propagation of mutant huntingtin protein[J]. Acta Neuropathol, 2016, 132(4): 577-592.
[11] Talaat RM, Adel S, Salem TA, et al. Correlation between angiogenic/inflammatory mediators in Wister rat model of liver dysplasia[J]. J Immunoassay Immunochem, 2016, 37(5): 472-484.
[12] Rozas JL, Gómez L, Tomás C, et al. Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease[J]. J Neurosci, 2011, 31(3): 1106-1113.
[13] Hu J, Song Y, Wang Q, et al. Incorporating historical sub-optimal deep neural networks for dose prediction in radiotherapy[J]. Med Image Anal, 2021, 67(5): 101886.
[14] Cheng L, Quek C, Sun X, et al. The detection of microRNA associated with Alzheimer's disease in biological fluids using next-generation sequencing technologies[J]. Front Genet, 2013, 4(3): 150.
[15] Johnson R, Zuccato C, Belyaev N, et al. A microRNA-based gene dysregulation pathway in Huntington's disease[J]. Neurobiol Dis, 2008, 29(3): 438-445.
[16] Wang J, Langfelder P, Horvath S, et al. Exosomes and homeostatic synaptic plasticity are linked to each other and to Huntington's, Parkinson's, and other neurodegenerative diseases by database-enabled analyses of comprehensively curated datasets[J]. Front Neurosci, 2017, 11(3): 149.
[17] Das S, Bhattacharyya NP. Heat shock factor 1-Regulated miRNAs can target huntingtin and suppress aggregates of mutant huntingtin[J]. Microrna, 2015, 4(3): 185-193.
[18] Sinha M, Ghose J, Bhattarcharyya NP. Micro RNA-214,-150,-146a and -125b target Huntingtin gene[J]. RNA Biol, 2011, 8(6): 1005-1021.
[19] Lee ST, Im W, Ban JJ, et al. Exosome-based delivery of miR-124 in a Huntington's disease model[J]. J Mov Disord, 2017, 10(1): 45-52.
[20] Liu T, Im W, Mook-Jung I, et al. MicroRNA-124 slows down the progression of Huntington's disease by promoting neurogenesis in the striatum[J]. Neural Regen Res, 2015, 10(5): 786-791.
[21] Dores MR, Trejo J. Endo-lysosomal sorting of G-protein-coupled receptors by ubiquitin: diverse pathways for G-protein-coupled receptor destruction and beyond[J]. Traffic, 2019, 20(2): 101-109.
[22] Jovicic A, Jolissaint J, Moser R, et al. MicroRNA-22(miR-22)overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington's disease-related mechanisms[J]. PLoS One, 2013, 8(1): e54222.
[23] Reed ER, Reed E, Latourelle J, et al. MicroRNAs in CSF as prodromal biomarkers for Huntington disease in the PREDICT-HD study[J]. Neurology, 2018, 90(4): e264-e272.
[24] Trzyna A, Banas-Zabczyk A. Adipose-derived stem cells secretome and its potential application in "Stem Cell-Free Therapy"[J]. Biomolecules, 2021, 11(6):345-369.
[25] Lee M, Liu T, Im W, et al. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington's disease in vitro model[J]. Eur J Neurosci, 2016, 44(4): 2114-2119.
[26] Crooke ST, Wang S, Vickers T, et al. Cellular uptake and trafficking of antisense oligonucleotides[J]. Nat Biotechnol, 2017, 35(3): 230-237.
[27] Li D, Li YP, Li YX, et al. Effect of regulatory network of eExosomes and microRNAs on neurodegenerative diseases[J]. Chin Med J(Engl), 2018, 1(18): 2216-2225.
[28] Im W, Ban JJ, Chung JY, et al. Multidrug resistance protein 1 reduces the aggregation of mutant huntingtin in neuronal cells derived from the Huntington's disease R6/2 model[J]. Sci Rep, 2015, 5(1): 16887.
[29] Lee M, Ban JJ, Kim KY, et al. Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro[J]. Biochem Biophys Res Commun, 2016, 479(3): 434-439.
[30] Yerrapragada SM, Bihl JC. Role of exosomes in mediating the cross-talk between adipose tissue and the brain[J]. Neuromolecular Med, 2021, 11(5): 2115-2120.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(编号为81241037)
更新日期/Last Update: 2022-09-10