[1]许莉莉,高雅然,郭星,等.Nrf2调节NADPH氧化酶2介导的脑缺血再灌注损伤的研究进展[J].卒中与神经疾病杂志,2022,29(05):479-482.[doi:10.3969/j.issn.1007-0478.2022.05.018]
点击复制

Nrf2调节NADPH氧化酶2介导的脑缺血再灌注损伤的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第29卷
期数:
2022年05期
页码:
479-482
栏目:
综述
出版日期:
2022-10-10

文章信息/Info

文章编号:
1007-0478(2022)05-0479-04
作者:
许莉莉高雅然郭星吕佩源
075000 河北省张家口市河北北方学院研究生院[许莉莉(河北省人民医院神经内科在读研究生)郭星(河北省人民医院神经内科在读研究生)]; 河北医科大学神经病学教研室[高雅然(河北省人民医院神经内科)]; 河北省人民医院神经内科[吕佩源(河北医科大学神经病学教研室)]
分类号:
R743.3
DOI:
10.3969/j.issn.1007-0478.2022.05.018
文献标志码:
A

参考文献/References:

[1] Campbell BV, De Silva DA, Macleod MR, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 71.
[2] Wu M, Gu X, Ma Z. Mitochondrial quality control in cerebral Ischemia-Reperfusion injury[J]. Mol Neurobiol, 2021, 58(10): 5253-5271.
[3] Magnani F, Mattevi A. Structure and mechanisms of ROS Generation by NADPH oxidases[J]. Curr Opin Struct Biol, 2019, 59: 91-97.
[4] Sajja RK, Kaisar MA, Vijay V, et al. In vitro modulation of redox and metabolism interplay at the brain vascular endothelium: genomic and proteomic profiles of sulforaphane activity[J]. Sci Rep, 2018, 8(1): 12708.
[5] Zhao Y, Xu J. Sanggenon C ameliorates cerebral Ischemia-Reperfusion injury by inhibiting inflammation and oxidative stress through regulating RhoA-ROCK signaling[J]. Inflammation, 2020, 43(4): 1476-1487.
[6] Li SY, Jiang DW, Rosenkrans ZT, et al. Aptamer-Conjugated framework nucleic acids for the repair of cerebral Ischemia-Reperfusion injury[J]. Nano Lett, 2019, 19(10): 7334-7341.
[7] Mukherjee A, Sarkar S, Jana S, et al. Neuro-protective role of nanocapsulated curcumin against cerebral ischemia-reperfusion induced oxidative injury[J]. Brain Res, 2019, 1704: 164-173.
[8] He R, Jiang Y, Shi Y, et al. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117: 111314.
[9] Yao Y, Hu S, Zhang C, et al. Ginsenoside Rd attenuates cerebral ischemia/reperfusion injury by exerting an anti-pyroptotic effect via the miR-139-5p/FoxO1/Keap1/Nrf2 axis[J]. Int Immunopharmacol, 2022, 105: 108582.
[10] Hu X, Wu L, Liu X, et al. Deficiency of ROS-Activated TRPM2 Channel protects neurons from cerebral Ischemia-Reperfusion injury through upregulating autophagy[J]. Oxid Med Cell Longev, 2021: 7356266.
[11] Zhang J, Fang X, Zhou Y, et al. The possible damaged mechanism and the preventive effect of monosialotetrahexosylganglioside in a rat model of cerebral Ischemia-Reperfusion injury[J]. J Stroke Cerebrovasc Dis, 2015, 24(7): 1471-1478.
[12] Yuan Q, Yuan Y, Zheng Y, et al. Anti-cerebral ischemia reperfusion injury of polysaccharides: A review of the mechanisms[J]. Biomed Pharmacother, 2021, 137: 111303.
[13] Abramov AY, Scorziello A, Duchen MR. Three distinct mechanisms generate Oxygen free radicals in neurons and contribute to cell death during anoxia and reoxygenation[J]. J Neurosci, 2007, 27(5): 1129-1138.
[14] Kelmanson IV, Shokhina AG, Kotova DA, et al. In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model[J]. Redox Biol, 2021, 48: 102178.
[15] Motterlini R, Foresti R. Heme oxygenase-1 as a target for drug discovery[J]. Antioxid Redox Signal, 2014, 20(11): 1810-1826.
[16] Shaw P, Chattopadhyay A. Nrf2-ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms[J]. J Cell Physiol, 2020, 235(4): 3119-3130.
[17] Sivandzade F, Prasad S, Bhalerao A, et al. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches[J]. Redox Biol, 2019, 21: 101059.
[18] Han M, Hu L, Chen Y. Rutaecarpine May improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury[J]. Drug Des Devel Ther, 2019, 13: 2923-2931.
[19] Tang C, Hong J, Hu C, et al. Palmatine protects against cerebral ischemia/reperfusion injury by activation of the AMPK/Nrf2 pathway[J]. Oxid Med Cell Longev, 2021: 6660193.
[20] Yang T, Sun Y, Li Q, et al. Ischemic preconditioning provides long-lasting neuroprotection against ischemic stroke: The role of Nrf2[J]. Exp Neurol, 2020, 325: 113142.
[21] Liu L, Vollmer MK, Fernandez VM, et al. Korean red ginseng pretreatment protects against Long-Term sensorimotor deficits after ischemic stroke likely through Nrf2[J]. Front Cell Neurosci, 2018, 12: 74.
[22] Yao Y, Miao W, Liu Z, et al. Dimethyl fumarate and monomethyl fumarate promote Post-Ischemic recovery in mice[J]. Transl Stroke Res, 2016, 7(6): 535-547.
[23] Lin R, Cai J, Kostuk EW, et al. Fumarate modulates the immune/inflammatory response and rescues nerve cells and neurological function after stroke in rats[J]. J Neuroinflammation, 2016, 13(1): 269.
[24] Kasai S, Mimura J, Ozaki T, et al. Emerging regulatory role of Nrf2 in Iron, Heme, and hemoglobin metabolism in physiology and disease[J]. Front Vet Sci, 2018, 5: 242.
[25] Tarafdar A, Pula G. The role of NADPH oxidases and oxidative stress in neurodegenerative disorders[J]. Int J Mol Sci, 2018, 19(12): 3824.
[26] El KI, Abdelsalam RM, Elbrairy AI, et al. Chrysin attenuates global cerebral ischemic reperfusion injury via suppression of oxidative stress, inflammation and apoptosis[J]. Biomed Pharmacother, 2019, 112: 108619.
[27] Wang Y, Shen Y, Yu X, et al. Role of NADPH Oxidase-Induced Hypoxia-Induced factor-1α increase in Blood-Brain barrier disruption after 2-Hour focal ischemic stroke in rat[J]. Neural Plast, 2021: 9928232.
[28] Zhu J, Yf W, Chai XM, et al. Exogenous NADPH ameliorates myocardial ischemia-reperfusion injury in rats through activating AMPK/mTOR pathway[J]. Acta Pharmacol Sin, 2020, 41(4): 535-545.
[29] Devanney N, Stewart AN, Gensel JC. Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma[J]. Exp Neurol, 2020, 329: 113310.
[30] Li H, Wang Y, Feng D, et al. Alterations in the time course of expression of the Nox family in the brain in a rat experimental cerebral ischemia and reperfusion model: effects of melatonin[J]. J Pineal Res, 2014, 57(1): 110-119.
[31] Huang YF, Lo PC, Yen CL, et al. Redox regulation of Pro-IL-1β processing May contribute to the increased severity of Serum-Induced arthritis in Nox2-Deficient mice[J]. Antioxid Redox Signal, 2015, 23(12): 973-984.
[32] Hu CF, Wu SP, Lin GJ, et al. Microglial Nox2 plays a key role in the pathogenesis of experimental autoimmune encephalomyelitis[J]. Front Immunol, 2021, 12: 638381.
[33] Lou Z, Wang AP, Duan XM, et al. Role of ALK5/SMAD2/3 signaling in the regulation of NOX expression in cerebral ischemia/reperfusion injury[J]. Exp Ther Med, 2018, 16(3): 1671-1678.
[34] Lou Z, Wang AP, Duan XM, et al. Upregulation of NOX2 and NOX4 mediated by TGF-β signaling pathway exacerbates cerebral ischemia/reperfusion oxidative stress injury[J]. Cell Physiol Biochem, 2018, 46(5): 2103-2113.
[35] Wu Y, Yao J, Feng K. miR-124-5p/NOX2 axis modulates the ROS production and the inflammatory microenvironment to protect against the cerebral I/R injury[J]. Neurochem Res, 2020, 45(2): 404-417.
[36] Zuo ML, Wang AP, Song GL, et al. miR-652 protects rats from cerebral ischemia/reperfusion oxidative stress injury by directly targeting NOX2[J]. Biomed Pharmacother, 2020, 124: 109860.
[37] Genovese T, Mazzon E, Paterniti I, et al. Modulation of NADPH oxidase activation in cerebral ischemia/reperfusion injury in rats[J]. Brain Res, 2011, 1372: 92-102.
[38] Jackman KA, Miller AA, De Silva TM, et al. Reduction of cerebral infarct volume by apocynin requires pretreatment and is absent in Nox2-deficient mice[J]. Br J Pharmacol, 2009, 156(4): 680-688.
[39] Kim HA, Brait VH, Lee S, et al. Brain infarct volume after permanent focal ischemia is not dependent on Nox2 expression[J]. Brain Res, 2012, 1483: 105-111.
[40] Wang J, Liu Y, Shen H, et al. Nox2 and Nox4 participate in ROS-Induced neuronal apoptosis and brain injury during Ischemia-Reperfusion in rats[J]. Acta Neurochir Suppl, 2020, 127: 47-54.
[41] Liu L, Cao Q, Gao W, et al. Melatonin ameliorates cerebral ischemia-reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1-BMAL1 pathway[J]. FASEB J, 2021, 35(12): e22040.
[42] Deshmukh P, Unni S, Krishnappa G, et al. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases[J]. Biophys Rev, 2017, 9(1): 41-56.
[43] Zhu G, Wang X, Chen L, et al. Crosstalk between the oxidative stress and Glia cells after stroke: from mechanism to therapies[J]. Front Immunol, 2022, 13: 852416.
[44] Kovac S, Angelova PR, Holmstroem KM, et al. Nrf2 regulates ROS production by mitochondria and NADPH oxidase[J]. Biochim Biophys Acta Gen Subj, 2015, 1850(4): 794-801.
[45] Kim SY, Chae CW, Lee HJ, et al. Sodium butyrate inhibits high cholesterol-induced neuronal amyloidogenesis by modulating NRF2 stabilization-mediated ROS levels: involvement of NOX2 and SOD1[J]. Cell Death Dis, 2020, 11(6): 469.
[46] Wei Y, Gong J, Xu Z, et al. Nrf2 promotes reparative angiogenesis through regulation of NADPH oxidase-2 in oxygen-induced retinopathy[J]. Free Radic Biol Med, 2016, cc99: 234-243.
[47] Chandran R, Kim T, Mehta SL, et al. A combination antioxidant therapy to inhibit NOX2 and activate Nrf2 decreases secondary brain damage and improves functional recovery after traumatic brain injury[J]. J Cereb Blood Flow Metab, 2018, 38(10): 1818-1827.
[48] Zhang J, Cai X, Zhang Q, et al. Hydrogen sulfide restores sevoflurane postconditioning mediated cardioprotection in diabetic rats: Role of SIRT1/Nrf2 signaling-modulated mitochondrial dysfunction and oxidative stress[J]. J Cell Physiol, 2021, 236(7): 5052-5068.

备注/Memo

备注/Memo:
基金项目:2019、2020年河北省高端人才资助项目(编号为6833452、83587216); 2019年河北省政府资助临床医学优秀人才培养项目(冀财社2019-139-5); 2020年河北省引智项目(冀科专函2020-19-2)
更新日期/Last Update: 2022-10-10