[1]刘喆,陈德义.干细胞来源的外泌体治疗中枢神经系统疾病的研究进展[J].卒中与神经疾病杂志,2023,30(02):224-229.[doi:10.3969/j.issn.1007-0478.2023.02.021]
点击复制

干细胞来源的外泌体治疗中枢神经系统疾病的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第30卷
期数:
2023年02期
页码:
224-229
栏目:
综述
出版日期:
2023-04-20

文章信息/Info

文章编号:
1007-0478(2023)02-0224-06
作者:
刘喆陈德义
730000 兰州,甘肃中医药大学基础医学院(刘喆); 青岛市黄岛区中心医院神经内科[陈德义(通信作者)]
分类号:
R742
DOI:
10.3969/j.issn.1007-0478.2023.02.021
文献标志码:
A

参考文献/References:

[1] Liu W, Bai X, Zhang A, et al. Role of exosomes in central nervous system diseases[J]. Front Mol Neurosci, 2019, 12: 240.
[2] Geloso MC, Corvino V, Marchese E, et al. The dual role of microglia in ALS: mechanisms and therapeutic approaches[J]. Front Aging Neurosci, 2017, 9:242.
[3] Wm P. Drug transport across the blood-brain barrier[J]. J Cereb Blood Flow Metab, 2012, 32(11): 1959-1972.
[4] Rufino-Ramos D, Albuquerque PR, Carmona V, et al. Extracellular vesicles: novel promising delivery systems for therapy of brain diseases[J]. J Control Release, 2017, 262: 247-258.
[5] Song Y, Li ZW, He TT, et al. M2 microglia-derived exosomes protect the mouse brain from ischemia-reperfusion injury via exosomal miR-124[J]. Theranostics, 2019, 9(10): 2910-2923.
[6] Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1): 68.
[7] Fayazi N, Sheykhhasan M, Soleimani AS, et al. Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment[J]. Mol Neurobiol, 2021, 58(7): 3494-3514.
[8] Harrell CR, Jovicic N, Djonov V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12): 1605.
[9] Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes[J]. Curr Opin Cell Biol, 2014, 29: 116-25.
[10] Rincón-Riveros A, Lopez L, Villegas EV, et al. Regulation of antitumor immune responses by exosomes derived from tumor and immune cells[J]. Cancers(Basel), 2021, 13(4): 847.
[11] Joo HS, Suh JH, Lee HJ, et al. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent[J]. Int J Mol Sci, 2020, 21(3): 727.
[12] Zhang L, Yu D. Exosomes in cancer development, metastasis, and immunity[J]. Biochim Biophys Acta Rev Cancer, 2019, 1871(2): 455-468.
[13] 李晓,刘玲英,柴家科.外泌体的生物学特性及临床应用的研究进展[J].解放军医学院学报,2015,36(10):1042-1044, 1051.
[14] Saint-Pol J, Gosselet F, Duban-Deweer S, et al. Targeting and crossing the blood-brain barrier with extracellular vesicles[J]. Cells, 2020, 9(4): 851.
[15] Yu Y, Hou K, Ji T, et al. The role of exosomal microRNAs in central nervous system diseases[J]. Mol Cell Biochem, 2021, 476(5): 2111-2124.
[16] Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery[J]. Trends Mol Med, 2015, 21(9): 543-548.
[17] Xin HQ, Li Y, Cui YS, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats[J]. J Cereb Blood Flow Metab, 2013, 33(11): 1711-1715.
[18] Doeppner TR, Herz J, Goergens AA, et al. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression[J]. Stem Cells Transl Med, 2015, 4(10): 1131-1143.
[19] Xin HQ, Katakowski M, Wang FJ, et al. MicroRNA cluster miR-17-92 Cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3): 747-753.
[20] Xin H, Liu Z, Buller B, et al. MiR-17-92 enriched exosomes derived from multipotent mesenchymal stromal cells enhance axon-myelin remodeling and motor electrophysiological recovery after stroke[J]. J Cereb Blood Flow Metab, 2021, 41(5): 1131-1144.
[21] Xu R, Bai Y, Min S, et al. In vivo monitoring and assessment of exogenous mesenchymal stem cell-derived exosomes in mice with ischemic stroke by molecular imaging[J]. Int J Nanomedicine, 2020, 15: 9011-9023.
[22] Dumbrava DA, Surugiu R, Börger V, et al. Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats[J]. Geroscience, 2022, 44(1): 293-310.
[23] Han M, Cao Y, Xue H, et al. Neuroprotective effect of mesenchymal stromal cell-derived extracellular vesicles against cerebral Ischemia-Reperfusion-Induced neural functional injury: a pivotal role for AMPK and JAK2/STAT3/NF-κB signaling pathway modulation[J]. Drug Des Devel Ther, 2020, 14: 2865-2876.
[24] Li S, Luo L, He Y, et al. Dental pulp stem cell-derived exosomes alleviate cerebral ischaemia-reperfusion injury through suppressing inflammatory response[J]. Cell Prolif, 2021, 54(8): e13093.
[25] Zhao Y, Gan Y, Xu GW, et al. MSCs-Derived exosomes attenuate acute brain injury and inhibit microglial inflammation by reversing CysLT2R-ERK1/2 mediated microglia M1 polarization[J]. Neurochem Res, 2020, 45(5): 1180-1190.
[26] Zhao Y, Gan Y, Xu G, et al. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation[J]. Life Sci, 2020, 260: 118403.
[27] Li G, Xiao LH, Qin H, et al. Exosomes-carried microRNA-26b-5p regulates microglia M1 polarization after cerebral ischemia/reperfusion[J]. Cell Cycle, 2020, 19(9): 1022-1035.
[28] Liu X, Zhang M, Liu H, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes[J]. Exp Neurol, 2021, 341: 113700.
[29] Juntunen M, Hagman S, Moisan A, et al. In vitro oxygen-glucose deprivation-induced stroke models with human neuroblastoma cell- and induced pluripotent stem cell-derived neurons[J]. Stem Cells Int, 2020, 2020: 8841026.
[30] Kong LY, Liang MY, Liu JP, et al. Mesenchymal stem cell-derived exosomes rescue oxygen-glucose deprivation-induced injury in endothelial cells[J]. Curr Neurovasc Res, 2020, 17(2): 155-163.
[31] Kang X, Jiang L, Chen X, et al. Exosomes derived from hypoxic bone marrow mesenchymal stem cells rescue OGD-induced injury in neural cells by suppressing NLRP3 inflammasome-mediated pyroptosis[J]. Exp Cell Res, 2021, 405(1): 112635.
[32] Zeng Q, Zhou Y, Liang D, et al. Exosomes secreted from bone marrow mesenchymal stem cells attenuate oxygen-glucose deprivation/Reoxygenation-induced pyroptosis in PC12 cells by promoting AMPK-dependent autophagic flux[J]. Front Cell Neurosci, 2020 Jul 17; 14:182.
[33] Hu Z, Yuan Y, Zhang X, et al. Human umbilical cord mesenchymal stem cell-derived exosomes attenuate oxygen-glucose deprivation/reperfusion-induced microglial pyroptosis by promoting FOXO3a-Dependent mitophagy[J]. Oxid Med Cell Longev, 2021, 2021: 6219715.
[34] Yang YJ, Cai YE, Zhang Y, et al. Exosomes secreted by adipose-derived stem cells contribute to angiogenesis of brain microvascular endothelial cells following oxygen-glucose deprivation in vitro through MicroRNA-181b/TRPM7 axis[J]. Journal of Molecular Neuroscience, 2018, 65(1): 74-83.
[35] Zhang Z, Zou X, Zhang R, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke[J]. Aging(Albany NY), 2021, 13(2): 3060-3079.
[36] Deng Y, Chen D, Gao F, et al. Exosomes derived from microRNA-138-5p-overexpressing bone marrow-derived mesenchymal stem cells confer neuroprotection to astrocytes following ischemic stroke via inhibition of LCN2[J]. J Biol Eng, 2019, 13: 71.
[37] Ling X, Zhang G, Xia Y, et al. Exosomes from human urine-derived stem cells enhanced neurogenesis via miR-26a/HDAC6 axis after ischaemic stroke[J]. J Cell Mol Med, 2020, 24(1): 640-654.
[38] Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease[J]. Nat Rev Neurol, 2018, 14(7): 399-415.
[39] Tang Y, Le WD. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181-1194.
[40] Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease[J]. Int J Neurosci, 2014, 124(5): 307-321.
[41] Cui GH, Guo HD, Li H, et al. RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease[J]. Immun Ageing, 2019, 16: 10.
[42] Losurdo M, Pedrazzoli M. D'agostino C,et al.Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xtg model of Alzheimer's disease[J]. Stem Cells Transl Med, 2020, 9(9): 1068-1084.
[43] Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB Journal, 2018, 32(2): 654-668.
[44] Ji Q, Wang X, Cai J, et al. MiR-22-3p regulates amyloid β deposit in mice model of Alzheimer's disease by targeting mitogen-activated protein kinase 14[J]. Curr Neurovasc Res, 2019, 16(5): 473-480.
[45] Wang SS, Jia JJ, Wang ZF. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice[J]. J Alzheimers Dis, 2018, 61(3): 1005-1013.
[46] Reza-Zaldivar EE, Hernández-Sapiéns MA, Gutiérrez-Mercado YK, et al. Mesenchymal stem cell-derived exosomes promote neurogenesis and cognitive function recovery in a mouse model of Alzheimer's disease[J]. Neural Regen Res, 2019, 14(9): 1626-1634.
[47] Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce Amyloid-Beta deposition by modulating microglial activation in Alzheimer's disease[J]. Neurochem Res, 2018, 43(11): 2165-2177.
[48] Chen Y, Lu CH, Ke CC, et al. Mesenchymal stem cell-derived exosomes ameliorate Alzheimer's disease pathology and improve cognitive deficits[J]. Biomedicines, 2021, 9(6): 594.
[49] Wei H, Xu Y, Chen Q, et al. Mesenchymal stem cell-derived exosomal miR-223 regulates neuronal cell apoptosis[J]. Cell Death Dis, 2020, 11(4): 290.
[50] Xiong WP, Yao WQ, Wang B, et al. BMSCs-exosomes containing GDF-15 alleviated SH-SY5Y cell injury model of Alzheimer's disease via AKT/GSK-3β/β-catenin[J]. Brain Res Bull, 2021, 177: 92-102.
[51] Bodart-Santos V, De Carvalho L, De Godoy MA, et al. Extracellular vesicles derived from human Wharton's jelly mesenchymal stem cells protect hippocampal neurons from oxidative stress and synapse damage induced by amyloid-β oligomers[J]. Stem Cell Res Ther, 2019, 10(1): 332.
[52] Reeve A, Simcox E, Turnbull D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor?[J]. Ageing Res Rev, 2014, 14(100): 19-30.
[53] Tysnes OB, Storstein A. Epidemiology of Parkinson's disease[J]. J Neural Transm, 2017, 124(8, SI): 901-905.
[54] Cooper JM, Wiklander P, Nordin JZ, et al. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice[J]. Movement Disorders, 2014, 29(12): 1476-1485.
[55] Nagatsu T, Nakashima A, Ichinose H, et al. Human tyrosine hydroxylase in Parkinson's disease and in related disorders[J]. J Neural Transm, 2019, 126(4): 397-409.
[56] Narbute K, Piipenko V, Pupure J, et al. Intranasal administration of extracellular vesicles derived from human teeth stem cells improves motor symptoms and normalizes tyrosine hydroxylase expression in the substantia nigra and striatum of the 6-Hydroxydopamine-Treated rats[J]. Stem Cells Transl Med, 2019, 8(5): 490-499.
[57] Li Q, Wang Z, Xing H, et al. Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease[J]. Mol Ther Nucleic Acids, 2021, 23: 1334-1344.
[58] Chen HX, Liang FC, Gu P, et al. Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy[J]. Cell Death Dis, 2020, 11(4): 288.
[59] Raza C, Anjum R, Shakeel N. Parkinson's disease: mechanisms, translational models and management strategies[J]. Life Sci, 2019, 226: 77-90.
[60] Jarmalaviciute A, Tunaitis V, Pivoraite UA, et al. Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis[J]. Cytotherapy, 2015, 17(7): 932-939.
[61] Goh SY, Chao YX, Dheen ST, et al. Role of MicroRNAs in Parkinson's disease[J]. Int J Mol Sci, 2019, 20(22): 5649.
[62] Chu F, Shi M, Zheng C, et al. The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis[J]. J Neuroimmunol, 2018, 318: 1-7.
[63] Li Z, Liu F, He X, et al. Exosomes derived from mesenchymal stem cells attenuate inflammation and demyelination of the central nervous system in EAE rats by regulating the polarization of microglia[J]. Int Immunopharmacol, 2019, 67: 268-280.
[64] Soundara RT, Giacoppo S, Diomede F, et al. Human periodontal ligament stem cells secretome from multiple sclerosis patients suppresses NALP3 inflammasome activation in experimental autoimmune encephalomyelitis[J]. Int J Immunopathol Pharmacol, 2017, 30(3): 238-252.
[65] Riazifar M, Mohammadi MR, Pone EJ, et al. Stem cell-derived exosomes as nanotherapeutics for autoimmune and neurodegenerative disorders[J]. ACS Nano, 2019, 13(6): 6670-6688.
[66] Guo H, Huang B, Wang Y, et al. Bone marrow mesenchymal stem cells-derived exosomes improve injury of hippocampal neurons in rats with depression by upregulating microRNA-26a expression[J]. Int Immunopharmacol, 2020, 82: 106285.

更新日期/Last Update: 2023-04-20