[1]郝梦蝶 郑伊桐 张利杰 杨新玲.血脑屏障与帕金森病的研究进展[J].卒中与神经疾病杂志,2023,30(03):325-328.[doi:10.3969/j.issn.1007-0478.2023.03.021]
点击复制

血脑屏障与帕金森病的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第30卷
期数:
2023年03期
页码:
325-328
栏目:
综述
出版日期:
2023-06-20

文章信息/Info

文章编号:
1007-0478(2023)03-0325-04
作者:
郝梦蝶 郑伊桐 张利杰 杨新玲
830000 乌鲁木齐,新疆医科大学附属第二医院神经内科[郝梦蝶 张利杰 杨新玲(通讯作者)]; 新疆医科大学附属第一医院神经外科(郑伊桐)
分类号:
R742.5
DOI:
10.3969/j.issn.1007-0478.2023.03.021
文献标志码:
A

参考文献/References:

[1] Profaci CP, Munji RN, Pulido RS, et al. The blood-brain barrier in health and disease: important unanswered questions[J]. J Exp Med, 2020, 217(4): e20190062.
[2] Cai Z, Qiao PF, Wan CQ, et al. Role of blood-brain barrier in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 63(4): 1223-1234.
[3] Pajares M, I Rojo A, Manda G, et al. Inflammation in Parkinson's disease: mechanisms and therapeutic implications[J]. Cells, 2020, 9(7): 1687.
[4] Zhao Y, Gan L, Ren L, et al. Factors influencing the blood-brain barrier permeability [J]. Brain Res, 2022,1788(29): 147937.
[5] Segura CB, Mata MP, Hernández LA, et al. Blood-brain barrier disruption:a common driver of central nervous system diseases[J]. Neuroscientist, 2022, 28(3): 222-237.
[6] Cash A, Theus MH. Mechanisms of blood-brain barrier dysfunction in traumatic brain injury[J]. Int J Mol Sci, 2020, 21(9):3344.
[7] Dong X, Gao J, Zhang CY, et al. Neutrophil membrane-derived nanovesicles alleviate inflammation to protect mouse brain injury from ischemic stroke[J]. ACS Nano, 2019, 13(2): 1272-1283.
[8] Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases[J]. Nat Rev Cancer, 2020, 20(1): 26-41.
[9] Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus[J]. Neuron, 2015, 85(2): 296-302.
[10] Barnes SR, Ng TS, Santa-Maria N, et al. ROCKETSHIP: a flexible and modular software tool for the planning, processing and analysis of dynamic MRI studies[J]. BMC Med Imaging, 2015, 15(1): 19.
[11] Barnes SR, Ng TS, Montagne A, et al. Optimal acquisition and modeling parameters for accurate assessment of low ktrans blood-brain barrier permeability using dynamic contrast-enhanced MRI[J]. Magn Reson Med, 2016, 75(5): 1967-1977.
[12] Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders[J]. Nat Rev Neurol, 2018, 14(3): 133-150.
[13] Al-Bachari S, Naish JH, Parker GJM, et al. Blood-brain barrier leakage is increased in Parkinson's disease[J]. Front Physiol, 2020, 11: 593026.
[14] Han L, Jiang C. Evolution of blood-brain barrier in brain diseases and related systemic nanoscale brain-targeting drug delivery strategies[J]. Acta Pharm Sin B, 2021, 11(8): 2306-2325.
[15] Ruan Z, Zhang D, Huang R,et al. Microglial activation damages dopaminergic neurons through MMP-2/-9-mediated increase of blood-brain barrier permeability in a Parkinson's disease mouse model[J]. Int J Mol Sci, 2022, 23(5): 2793.
[16] Gray MT, Woulfe JM. Striatal blood-brain barrier permeability in Parkinson's disease[J]. J Cereb Blood Flow Metab, 2015, 35(5): 747-750.
[17] Carvey PM, Zhao CH, Hendey B, et al. 6-Hydroxydopamine-induced alterations in blood-brain barrier permeability[J]. Eur J Neurosci, 2005, 22(5): 1158-1168.
[18] Zhao C, Ling Z, Newman MB, et al. TNF-alpha knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice[J]. Neurobiol Dis, 2007, 26(1): 36-46.
[19] Costea L, Mészáros Á, Bauer H, et al. The blood-brain barrier and its intercellular junctions in age-related brain disorders[J]. Int J Mol Sci, 2019, 20(21): 5472.
[20] Nikolakopoulou AM, Montagne A, Kisler K, et al. Pericyte loss leads to circulatory failure and pleiotrophin depletion causing neuron loss[J]. Nat Neurosci, 2019, 22(7): 1089-1098.
[21] Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: from discovery to clinical relevance[J]. Pharmacol Ther, 2022, 234(6): 108119.
[22] Belarbi K, Cuvelier E, Bonte MA, et al. Glycosphingolipids and neuroinflammation in Parkinson's disease[J]. Mol Neurodegener, 2020, 15(1): 59.
[23] Bhattacharyya D, Bhunia A. Gut-Brain axis in Parkinson's disease etiology: the role of lipopolysaccharide[J]. Chem Phys Lipids, 2021, 235(3): 105029.
[24] Barton SM, Janve VA, Mcclure R, et al. Lipopolysaccharide induced opening of the blood brain barrier on aging 5XFAD mouse model[J]. J Alzheimers Dis, 2019, 67(2): 503-513.
[25] Lerner RP, Francardo V, Fujita K, et al. Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia[J]. Sci Rep, 2017, 7(1): 16005.
[26] Bowman GL, Dayon L, Kirkland R, et al. Blood-brain barrier breakdown,neuroinflammation,and cognitive decline in older adults[J]. Alzheimers Dement, 2018, 14(12): 1640-1650.
[27] Pisani V, Stefani A, Pierantozzi M, et al. Increased blood-cerebrospinal fluid transfer of albumin in advanced Parkinson's disease[J]. J Neuroinflammation, 2012 Aug 8; 9:188.
[28] Janelidze S, Lindqvist D, Francardo V, et al. Increased CSF biomarkers of angiogenesis in Parkinson disease[J]. Neurology, 2015, 85(21): 1834-1842.
[29] Elabi O, Gaceb A, Carlsson R, et al. Human α-Synuclein overexpression in a mouse model of Parkinson's disease leads to vascular pathology,blood brain barrier leakage and pericyte activation[J]. Sci Rep, 2021, 11(1): 1120.
[30] Pienaar IS, Lee CH, Elson JL, et al. Deep-brain stimulation associates with improved microvascular integrity in the subthalamic nucleus in Parkinson's disease[J]. Neurobiol Dis, 2015, 74(2): 392-405.
[31] Pediaditakis I, Kodella KR, Manatakis DV, et al. Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption[J]. Nat Commun, 2021, 12(1): 5907.
[32] Xiao M, Xiao ZJ, Yang B, et al. Blood-brain barrier: more contributor to disruption of central nervous system homeostasis than victim in neurological disorders[J]. Front Neurosci,2020, 14(8): 764.
[33] Luo S, Du L, Cui Y. Potential therapeutic applications and developments of exosomes in Parkinson's disease[J]. Mol Pharm, 2020, 17(5): 1447-1457.
[34] Sim TM, Tarini D, Dheen ST, et al. Nanoparticle-based technology approaches to the management of neurological disorders[J]. Int J Mol Sci, 2020, 21(17): 6070.
[35] Tashima T. Smart strategies for therapeutic agent delivery into brain across the blood-brain barrier using Receptor-Mediated transcytosis[J]. Chem Pharm Bull(Tokyo), 2020, 68(4): 316-325.
[36] Yu YJ, Watts RJ. Developing therapeutic antibodies for neurodegenerative disease[J]. Neurotherapeutics, 2013, 10(3): 459-472.
[37] Habib S, Singh M.Angiopep-2-modified nanoparticles for brain-directed delivery of therapeutics: a review[J]. Polymers(Basel), 2022, 14(4): 712.
[38] Leggio L, Arrabito G, Ferrara V, et al. Mastering the tools:natural versus artificial vesicles in nanomedicine[J]. Adv Healthc Mater, 2020, 9(18): e2000731.
[39] Xiao Y, Wang SK, Zhang Y, et al. Role of extracellular vesicles in neurodegenerative diseases[J]. Prog Neurobiol,2021, 201(6): 102022.
[40] Leggio L, Paternò G, Vivarelli S, et al. Extracellular vesicles as nanotherapeutics for Parkinson's disease[J]. Biomolecules, 2020, 10(9):1327.
[41] Longoni B, Fasciani I, Kolachalam S, et al. Neurotoxic and neuroprotective role of exosomes in Parkinson's disease[J]. Curr Pharm Des, 2019, 25(42): 4510-4522.
[42] Qu M, Lin Q, Huang L,et al. Dopamine-loaded blood exosomes targeted to brain for better treatment of Parkinson's disease[J]. J Control Release, 2018, 287(19): 156-166.
[43] Pineda-Pardo JA, Gasca-Salas C, Fernández-Rodríguez B, et al. Striatal blood-brain barrier opening in Parkinson's disease dementia: a pilot exploratory study [J]. Mov Disord, 2022,37(10):2057-2065.
[44] Gasca SC, Fernández-Rodríguez B, Pineda PA, et al. Blood-brain barrier opening with focused ultrasound in Parkinson's disease dementia[J]. Nat Commun, 2021, 12(1): 779.
[45] Naqvi S, Panghal A, Flora SJS. Nanotechnology: a promising approach for delivery of neuroprotective Drugs[J]. Front Neurosci, 2020, 14(6): 494.
[46] Shakeri S, Ashrafizadeh M, Zarrabi A, et al. Multifunctional polymeric nanoplatforms for brain diseases diagnosis, therapy and theranostics[J]. Biomedicines, 2020, 8(1): 13.
[47] Torres-Ortega PV, Saludas L, Hanafy AS, et al. Micro- and nanotechnology approaches to improve Parkinson's disease therapy[J]. J Control Release, 2019, 295(3): 201-213.
[48] Monge FV, Biolchi MA, Lima MR, et al. Dopamine-loaded nanoparticle systems circumvent the blood-brain barrier restoring motor function in mouse model for Parkinson's Disease[J]. Sci Rep, 2021, 11(1): 15185.
[49] Xiong S, Li Z, Liu Y,et al. Brain-targeted delivery shuttled by black phosphorus nanostructure to treat Parkinson's disease[J]. Biomaterials, 2020, 260(22): 120339.
[50] Wang ZY, Sreenivasmurthy SG, Song JX, et al. Strategies for brain-targeting liposomal delivery of small hydrophobic molecules in the treatment of neurodegenerative diseases[J]. Drug Discov Today, 2019, 24(2): 595-605.
[51] Kahana M, Weizman A, Gabay M, et al. Liposome-based targeting of dopamine to the brain:a novel approach for the treatment of Parkinson's disease[J]. Mol Psychiatry, 2021, 26(6): 2626-2632.

备注/Memo

备注/Memo:
基金项目:国家自然科学基金项目(编号为82160232)
更新日期/Last Update: 2023-06-20