参考文献/References:
[1] Cascella R, Cecchi C. Calcium dyshomeostasis in alzheimer’s disease pathogenesis[J]. Int J Mol Sci, 2021, 22(9): 4914.
[2] Wang W, Zhao F, Ma X, et al. Mitochondria dysfunction in the pathogenesis of Alzheimer’s disease: recent advances[J]. Mol Neurodegener, 2020, 15(1): 30.
[3] Simunkova M, Alwasel SH, Alhazza IM, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease[J]. Arch Toxicol, 2019, 93(9): 2491-2513.
[4] Congdon EE, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease[J]. Nat Rev Neurol, 2018, 14(7): 399-415.
[5] Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies[J]. Cell, 2019, 179(2): 312-339.
[6] Chen YJ, Hsu KW, Tsai JN, et al. Involvement of protein kinase C in the inhibition of lipopolysaccharide-induced nitric oxide production by thapsigargin in RAW 264.7 macrophages[J]. Int J Biochem Cell Biol, 2005, 37(12): 2574-2585.
[7] García-Casas P, Arias-Del-Val J, Alvarez-Illera P, et al. Inhibition of Sarco-Endoplasmic reticulum Ca2+ ATPase extends the lifespan in C. elegans worms[J]. Front Pharmacol, 2018, 9: 669. Doi: 10.3389/fphar.2018.00669.
[8] Pham AH, Mccaffery JM, Chan DC. Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics[J]. Genesis, 2012, 50(11): 833-843.
[9] Li XC, Hu Y, Wang ZH, et al. Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins[J]. Sci Rep, 2016, 6: 24756. Doi: 10.1038/srep24756.
[10] Ahnaou A, Walsh C, Manyakov NV, et al. Early electrophysiological disintegration of hippocampal neural networks in a novel locus coeruleus Tau-Seeding mouse model of Alzheimer’s disease[J]. Neural Plast, 2019:6981268. Doi: 10.1155/2019/6981268
[11] Chastagner P, Loria F, Jy V, et al. Fate and propagation of endogenously formed Tau aggregates in neuronal cells[J]. EMBO Mol Med, 2020, 12(12): e12025.
[12] Sanders DW, Kaufman SK, Devos SL, et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies[J]. Neuron, 2014, 82(6): 1271-1288.
[13] Obara K, Miyashita N, Xu C, et al. Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+[J]. Proc Natl Acad Sci USA, 2005, 102(41): 14489-14496.
[14] Bauman BM, Jeong C, Savage M, et al. Dr. jekyll and Mr. Hyde: oxidizable phenol-generated reactive Oxygen species enhance sulforaphane’s antioxidant response element activation, even as they suppress Nrf2 protein accumulation[J]. Free Radic Biol Med, 2018, 124: 532-540.Doi: 10.1016/j.freeradbiomed.2018.06.039.
[15] Lam LK, Garg P. Tumorigenicity of di-tert-butyl-substituted hydroquinone and hydroxyanisoles in the forestomach of Syrian golden hamsters[J]. Carcinogenesis, 1991, 12(7): 1341-1344.
[16] Imazawa T, Mitsumori K, Kitajima S, et al. Time course of ultrastructural changes and immunoelectron microscopic localization of neurocalcin in motor endplates of the lumbrical muscles of rats given a single administration of 2,5-di(tert-butyl)-1,4-hydroquinone[J]. Acta Neuropathol, 2000, 99(2): 109-116.
[17] Goedert M, Spillantini MG. Propagation of Tau aggregates[J]. Mol Brain, 2017, 10(1): 18.
相似文献/References:
[1]赵晓晖,朱玉萍,杨娟,等.抗帕颗粒对帕金森病模型小鼠酪氨酸羟化酶神经元的影响[J].卒中与神经疾病杂志,2017,24(01):8.[doi:10.3969/j.issn.1007-0478.2017.01.002]
Zhao Xiaohui,Zhu Yuping,Yang Juan,et al.Effect of anti-Parkinson granule on TH positive-neurons in model mice with Parkinson disease[J].Stroke and Nervous Diseases,2017,24(01):8.[doi:10.3969/j.issn.1007-0478.2017.01.002]