参考文献/References:
[1] 2019年中国血管性认知障碍诊治指南[J].中华医学杂志,2019, 99(35):2737-2744.
[2] Han Y, Zhou A, Li F, et al. Apolipoprotein E ε4 allele is associated with vascular cognitive impairment no dementia in Chinese population[J]. J Neurol Sci, 2020, 409:116606.
[3] 祝铁军,刘彬,于美婷,等.非痴呆型血管性认知功能障碍的研究进展[J].现代生物医学进展,2015,15(20):3990-3992, 4000.
[4] Goodman RA, Lochner KA, Thambisetty M, et al. Prevalence of dementia subtypes in United States Medicare fee-for-service beneficiaries, 2011-2013[J]. Alzheimers Dement, 2017, 13(1): 28-37.
[5] Moore LD, Le T, Fan G. DNA methylation and its basic function[J]. Neuropsychopharmacology, 2013, 38(1): 23-38.
[6] Tuncel G, Kalkan R. Importance of m N(6)-methyladenosine(m(6)A)RNA modification in cancer[J]. Med Oncol, 2019, 36(4): 36.
[7] Chang M, Lv H, Zhang W, et al. Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain[J]. Open Biol, 2017, 7(9): 170166.
[8] Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation[J]. Genes Dev, 2015, 29(13): 1343-1355.
[9] Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons[J]. Cell, 2012, 149(7): 1635-1646.
[10] Meyer KD, Jaffrey SR. The dynamic epitranscriptome: N6-methyladenosine and gene expression control[J]. Nat Rev Mol Cell Biol, 2014, 15(5): 313-326.
[11] Balacco Dario L, SollerMatthias. The mA writer: rise of a Machine for growing tasks[J]. Biochemistry, 2019, 58(5): 363-378.
[12] Bokar JA, Shambaugh ME, Polayes D, et al. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA(N6-adenosine)-methyltransferase[J]. Cold Spring Harbor Laboratory Press, 1997, 3(11):1233-47.
[13] Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of mettl3 and mettl14 methyltransferases[J]. Mol Cell, 2016, 63(2): 306-317.
[14] Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014, 10(2): 93-95.
[15] Balacco DL, Soller M. The m(6)A writer: rise of a machine for growing tasks[J]. Biochemistry, 2019, 58(5): 363-378.
[16] LivnehIdo, Moshitch-Moshkovitz Sharon, Amariglio Ninette, et al. The mA epitranscriptome: transcriptome plasticity in brain development and function[J]. Nat Rev Neurosci, 2020, 21(1): 36-51.
[17] Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011, 7(12): 885-887.
[18] Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility[J]. Mol Cell, 2013, 49(1): 18-29.
[19] Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m6Am in the 5’ cap controls mRNA stability[J]. Nature, 2017, 541(7637): 371-375.
[20] Chen W, Zhang L, Zheng G, et al. Crystal structure of the RNA demethylase ALKBH5 from zebrafish[J]. FEBS Lett, 2014, 588(6): 892-898.
[21] Shi Hailing, Wang Xiao, Lu Zhike, et al. YTHDF3 facilitates translation and decay of N-methyladenosine-modified RNA[J].Cell Res, 2017, 27(3): 315-328.
[22] Li Ang, Chen Yusheng, Ping Xiaoli, et al. Cytoplasmic mA reader YTHDF3 promotes mRNA translation[J]. Cell Research, 2017, 27(3): 444-447.
[23] Huang Huilin, Weng Hengyou, Chen Jianjun,mA Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer[J]. Cancer Cell, 2020, 37(3): 270-288.
[24] Hsu Phillip J, Zhu Yunfei,MaHonghui, et al. Ythdc2 is an N-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9): 1115-1127.
[25] Wojtas Magdalena Natalia, Pandey Radha Raman, Mendel Mateusz, et al. Regulation of mA Transcripts by the 3’→5’ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline[J]. Mol Cell, 2017, 68(2): 374-387, e12.
[26] BerlivetSoizik, ScutenaireJérémy, Deragon Jean-Marc, et al. Readers of the mA epitranscriptomic code[J]. BiochimBiophys Acta Gene Regul Mech, 2019, 1862(3): 329-342.
[27] Huang H, Weng H, Sun W, et al. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation[J]. Nat Cell Biol, 2018, 20(3): 285-295.
[28] Yoon Ki-Jun, Ringeling Francisca Rojas, Vissers Caroline, et al. Temporal Control of Mammalian Cortical Neurogenesis by mA Methylation[J]. Cell, 2017, 171(4): 877-889, e17.
[29] Li L, Zang L, Zhang F, et al. Fat mass and obesity-associated(FTO)protein regulates adult neurogenesis[J]. Hum Mol Genet, 2017, 26(13): 2398-2411.
[30] Li Miaomiao, Zhao Xu, Wang Wei, et al. Ythdf2-mediated mA mRNA clearance modulates neural development in mice[J]. Genome Biol, 2018, 19(1): 69.
[31] Ma C, Chang M, Lv H, et al. RNA m(6)A methylation participates in regulation of postnatal development of the mouse cerebellum[J]. Genome Biol, 2018, 19(1): 68.
[32] Wang CX, Cui GS, Liu X, et al. METTL3-mediated m6A modification is required for cerebellar development[J]. PLoS Biol, 2018, 16(6): e2004880.
[33] Zhang Z, Wang M, Xie D, et al. METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation[J]. Cell Res, 2018, 28(11): 1050-1061.
[34] Walters BJ, Mercaldo V, Gillon CJ, et al. The role of the RNA demethylase FTO(fat mass and Obesity-Associated)and mRNA methylation in hippocampal memory formation[J]. Neuropsychopharmacology, 2017, 42(7): 1502-1510.
[35] Shi Hailing, Zhang Xuliang, Weng Yilan, et al. mA facilitates hippocampus-dependent learning and memory through YTHDF1[J]. Nature, 2018, 563(7730): 249-253.
[36] Koranda JL, Dore L, Shi H, et al. Mettl14 is essential for epitranscriptomic regulation of striatal function and learning[J]. Neuron, 2018, 99(2): 283-292.e5.
[37] Bromberg-Martin Ethan S, Matsumoto Masayuki, Hikosaka Okihide, et al. Dopamine in motivational control: rewarding, aversive, and alerting[J]. Neuron, 2010, 68(5): 815-834.
[38] Hess ME, Hess S, Meyer KD, et al. The fat mass and obesity associated gene(Fto)regulates activity of the dopaminergic midbrain circuitry[J]. Nat Neurosci, 2013, 16(8): 1042-1048.
[39] Popoli M, Yan Z, Mcewen BS, et al. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission[J]. Nat Rev Neurosci, 2011, 13(1): 22-37.
[40] Radley J, Morilak D, Viau V, et al. Chronic stress and brain plasticity: Mechanisms underlying adaptive and maladaptive changes and implications for stress-related CNS disorders[J]. Neurosci Biobehav Rev, 2015, 58:79-91.
[41] Engel M, Eggert C, Kaplick PM, et al. The role of m(6)A/m-RNA methylation in stress response regulation[J]. Neuron, 2018, 99(2): 389-403.e9.
[42] Gibson EM, Purger D, Mount CW, et al. Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain[J]. Science, 2014, 344(6183): 1252304.
[43] Xu H, Dzhashiashvili Y, Shah A, et al. m(6)A mRNA methylation is essential for oligodendrocyte maturation and CNS myelination[J]. Neuron, 2020, 105(2): 293-309.e5.
[44] Weng Yilan,Wang Xu, An Ran, et al. Epitranscriptomic mA Regulation of Axon Regeneration in the Adult Mammalian Nervous System[J]. Neuron, 2018, 97(2): 313-325, e6.
[45] Kalaria RN, Akinyemi R, Ihara M. Stroke injury, cognitive impairment and vascular dementia[J]. Biochim Biophys Acta, 2016, 1862(5): 915-925.
[46] Nyberg F. Structural plasticity of the brain to psychostimulant use[J]. Neuropharmacology, 2014, 87:115-124.
[47] Kowiański P, Lietzau G, Czuba E, et al. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity[J]. Cell Mol Neurobiol, 2018, 38(3): 579-593.
[48] Liu H, Zhang JJ. Cerebral hypoperfusion and cognitive impairment: the pathogenic role of vascular oxidative stress[J]. International Journal of Neuroscience, 2012, 122(9): 494-499.
[49] Iadecola C. The pathobiology of vascular dementia[J]. Neuron, 2013, 80(4): 844-866.
[50] Deng W, Aimone JB, Gage FH. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory?[J]. Nat Rev Neurosci, 2010, 11(5): 339-350.
[51] Christian KM, Song H, Ming GL. Functions and dysfunctions of adult hippocampal neurogenesis[J]. Annu Rev Neurosci, 2014, 37(1): 243-262.
[52] Widagdo J, Zhao QY, Kempen MJ, et al. Experience-Dependent accumulation of N6-Methyladenosine in the prefrontal cortex is associated with memory processes in mice[J]. J Neurosci, 2016, 36(25): 6771-6777.
[53] Chen Junchen, Zhang Yichang, Huang Chunmin, et al. m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2[J]. Genomics, Proteomics & Bioinformatics, 2019, 17(2):154-168.
[54] Zhang J, Ji F, Liu Y, et al. Ezh2 regulates adult hippocampal neurogenesis and memory[J]. J Neurosci, 2014, 34(15): 5184-5199.
[55] Song Y, Wang Q, Li L, et al. Comprehensive epigenetic analysis of m6A modification in the hippocampal injury of diabetic rats[J]. Epigenomics, 2020, 12(20): 1811-1824.
[56] Zhang L, Cheng Y, Xue Z, et al. Sevoflurane impairs m6A-mediated mRNA translation and leads to fine motor and cognitive deficits[J]. Cell Biol Toxicol, 2021, Doi: 10.1007/s10565-021-09601-4.
[57] Merkurjev Daria, Hong Wanting, Iida Kei, et al. Synaptic N-methyladenosine(mA)epitranscriptome reveals functional partitioning of localized transcripts[J]. Nat Neurosci, 2018, 21(7): 1004-1014.
[58] Xu K, Mo Y, Li D, et al. N6-methyladenosine demethylases Alkbh5/Fto regulate cerebral ischemia-reperfusion injury[J]. Ther Adv Chronic Dis, 2020,11. Doi: 10.1177/2040622320916024.
[59] Chokkalla Anil K, Mehta Suresh L, KimTae Hee, et al. Transient focal ischemia significantly alters the mA epitranscriptomic tagging of RNAs in the brain[J]. Stroke, 2019, 50(10): 2912-2921.
[60] Zhang Z, Wang Q, Zhao X, et al. YTHDC1 mitigates ischemic stroke by promoting Akt phosphorylation through destabilizing PTEN mRNA[J]. Cell Death Dis, 2020, 11(11): 977.
[61] Wang Y, Mao J, Wang X, et al. Genome-wide screening of altered m6A-tagged transcript profiles in the hippocampus after traumatic brain injury in mice[J]. Epigenomics, 2019, 11(7): 805-819.
[62] Yu J, Zhang Y, Ma H, et al. Epitranscriptomic profiling of N6-methyladenosine-related RNA methylation in rat cerebral cortex following traumatic brain injury[J]. Mol Brain, 2020, 13(1): 11.
[63] Park SB, Park GH, Um Y, et al. Wood-cultivated ginseng exerts anti-inflammatory effect in LPS-stimulated RAW264.7 cells[J]. Int J Biol Macromol, 2018, 116:327-334
[64] Yu R, Li Q, Feng Z, et al. m6A reader YTHDF2 regulates LPS-Induced inflammatory response[J]. Int J Mol Sci, 2019, 20(6): 1323.
[65] Feng Z, Li Q, Meng R, et al. METTL3 regulates alternative splicing of MyD88 upon the lipopolysaccharide-induced inflammatory response in human dental pulp cells[J]. J Cell Mol Med, 2018, 22(5): 2558-2568.
[66] Iadecola C, Duering M, Hachinski V, et al. Vascular cognitive impairment and dementia: JACC scientific expert panel[J]. J Am Coll Cardiol, 2019, 73(25): 3326-3344.
[67] Han M, Li Q, Liu L, et al. Prehypertension and risk of cardiovascular diseases: a meta-analysis of 47 cohort studies[J]. J Hypertens, 2019, 37(12): 2325-2332.
[68] Wu Q, Yuan X, Han R, et al. Epitranscriptomic mechanisms of N6-methyladenosine methylation regulating mammalian hypertension development by determined spontaneously hypertensive rats pericytes[J]. Epigenomics, 2019, 11(12): 1359-1370.
[69] Mo Xingbo, Lei Shufeng, Zhang Yonghong, et al. Examination of the associations between mA-associated single-nucleotide polymorphisms and blood pressure[J]. Hypertens Res, 2019, 42(10): 1582-1589.
[70] Zheng Y, Nie P, Peng D, et al. m6AVar: a database of functional variants involved in m6A modification[J]. Nucleic Acids Res, 2018, 46(D1): D139-D145.
[71] Gilbert ER, Liu D. Epigenetics: the missing Link to understanding β-cell dysfunction in the pathogenesis of type 2 diabetes[J]. Epigenetics, 2012, 7(8): 841-852.
[72] Shen F, Huang W, Huang JT, et al. Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5[J]. J Clin Endocrinol Metab, 2015, 100(1): E148-E154.
[73] De Jesus DF, Zhang Z, Kahraman S, et al. m(6)A mRNA methylation regulates human β-Cell biology in physiological states and in type 2 diabetes[J]. Nat Metab, 2019, 1(8): 765-774.
[74] Xie W, Ma LL, Xu YQ, et al. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of Fasn mRNA and promoting fatty acid metabolism[J]. Biochem Biophys Res Commun, 2019, 518(1): 120-126.
[75] Yang Y, Shen F, Huang W, et al. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes[J]. J Clin Endocrinol Metab, 2019, 104(3): 665-673.
[76] Mo Xingbo,Lei Shufeng,Zhang Yonghong et al. Genome-wide enrichment of mA-associated single-nucleotide polymorphisms in the lipid loci[J].Pharmacogenomics J, 2019, 19: 347-357.
[77] Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014, 24(12): 1403-1419.
[78] Lu Na, Li Xingmei,Yu Jiayao, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder bymModification of m A RNA methylation in piglets[J]. Lipids, 2018, 53(1): 53-63.
[79] Jia X, Nie Q, Lamont SJ, et al. Variation in sequence and expression of the avian FTO, and association with glucose metabolism, body weight, fatness and body composition in chickens[J]. Int J Obes(Lond), 2012, 36(8): 1054-1061.
[80] Zhong Xiang, Yu Jiayao,Frazier Katya, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of mA mRNA methylation[J]. Cell Rep, 2018, 25(7): 1816-1828, e4.