[1]曲广泽,毛建辉.去乙酰化酶6在颈动脉狭窄中的研究进展[J].卒中与神经疾病杂志,2022,29(04):387-390.[doi:10.3969/j.issn.1007-0478.2022.04.018]
点击复制

去乙酰化酶6在颈动脉狭窄中的研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第29卷
期数:
2022年04期
页码:
387-390
栏目:
综述
出版日期:
2022-09-10

文章信息/Info

文章编号:
1007-0478(2022)04-0387-04
作者:
曲广泽毛建辉
053000 河北医科大学(曲广泽); 哈励逊国际和平医院[毛建辉(通信作者)]
分类号:
R743.1
DOI:
10.3969/j.issn.1007-0478.2022.04.018
文献标志码:
A

参考文献/References:

[1] 臧琳,樊露,仇建婷,等.症状性颈内动脉狭窄患者脑卒中复发影响因素的研究进展[J].中华老年心脑血管病杂志,2020,22(6):668-670.
[2] 王陇德,刘建民,杨弋,等.《中国脑卒中防治报告2017》概要[J].中国脑血管病杂志,2018,11( 11):611-617.
[3] Vitiello M, Zullo A, Servillo L, et al. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases[J]. Ageing Res Rev, 2017, 35: 301-311.
[4] Yang Z, Huang Y, Zhu L, et al. SIRT6 promotes angiogenesis and hemorrhage of carotid plaque via regulating HIF-1α and reactive Oxygen species[J]. Cell Death Dis, 2021, 12(1): 77.
[5] Finkel T, Deng CX, Mostoslavsky R. Recent progress in the biology and physiology of sirtuins[J]. Nature, 2009, 460(7255): 587-591.
[6] Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction[J]. Genes Dev, 2006, 20(21): 2913-2921.
[7] Chang AR, Ferrer CM, Mostoslavsky R. SIRT6, a mammalian deacylase with multitasking abilities[J]. Physiol Rev, 2020, 100(1): 145-169.
[8] Tian X, Firsanov D, Zhang Z, et al. SIRT6 is responsible for more efficient DNA Double-Strand break repair in Long-Lived species[J]. Cell, 2019, 177(3): 622-638.e22.
[9] Naiman S, Huynh FK, Gil R, et al. SIRT6 promotes hepatic Beta-Oxidation via activation of PPARα[J]. Cell Rep, 2019, 29(12): 4127-4143.e8.
[10] Zavodni AE, Wasserman BA, McClelland RL, et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis(MESA)[J]. Radiology, 2014, 271(2): 381-389.
[11] Selwaness M, Bos D, van den Bouwhuijsen Q, et al. Carotid atherosclerotic plaque characteristics on magnetic resonance imaging relate with history of stroke and coronary heart disease[J]. Stroke, 2016, 47(6): 1542-1547.
[12] Bos D, Arshi B, Van Den Bouwhuijsen QJA, et al. Atherosclerotic carotid plaque composition and incident stroke and coronary events[J]. J Am Coll Cardiol, 2021, 77(11): 1426-1435.
[13] Zelová H, Hoek J. TNF-α signalling and inflammation: interactions between old acquaintances[J]. Inflamm Res, 2013, 62(7): 641-651.
[14] Liu T, Zhang L, Joo D, et al.NF-κB signaling in inflammation[Z],2017.
[15] Mendes KL, Lelis DF, Santos S. Nuclear sirtuins and inflammatory signaling pathways[J]. Cytokine Growth Factor Rev, 2017, 38: 98-105.
[16] Sosnowska B, Mazidi M, Penson P, et al. The sirtuin family members SIRT1,SIRT3 and SIRT6: their role in vascular biology and atherogenesis[J]. Atherosclerosis, 2017, 265: 275-282.
[17] Jiang H, Khan S, Wang Y, et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyllysine[J]. Nature, 2013, 496(7443):110-113.
[18] Zhang Xiaoyu, Spiegelman NA, Nelson OD, et al.SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation[J]. Life, 2017, 13(6): e25158.
[19] Bauer I, Grozio A, Lasigliè D, et al. The NAD+-dependent histone deacetylase SIRT6 promotes cytokine production and migration in pancreatic cancer cells by regulating Ca2+ responses[J]. J Biol Chem, 2012, 287(49): 40924-40937.
[20] Van Meter M, Simon M, Tombline G, et al. JNK phosphorylates SIRT6 to stimulate DNA Double-Strand break repair in response to oxidative stress by recruiting PARP1 to DNA breaks[J]. Cell Rep, 2016, 16(10): 2641-2650.
[21] El Assar M AJ, Rodríguez-Mañas L.Oxidative stress and vascular inflammation in aging[Z],2013:380-401.
[22] D'Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 signaling pathways in cardiovascular disease Protection[J]. Antioxid Redox Signal, 2018, 28(8): 711-732.
[23] Liu R, Liu H, Ha Y, et al. Oxidative stress induces endothelial cell senescence via downregulation of Sirt6[J]. Bio Med Research International, 2014: 902842.
[24] Ota H, Eto M, Kano MR, et al. Cilostazol inhibits oxidative stress-induced premature senescence via upregulation of Sirt1 in human endothelial cells[J]. Arterioscler Thromb Vasc Biol, 2008, 28(9): 1634-1639.
[25] Gutiérrez-Uzquiza G, Álvaro. p38α mediates cell survival in response to oxidative stress via induction of antioxidant genes:effect on the p70S6K pathway[J]. J Biol Chem, 2012, 287(4): 2632-2642.
[26] Takahashi A, Ohtani N, Hara E. Irreversibility of cellular senescence: dual roles of p16INK4a/Rb-pathway in cell cycle control[J]. Cell Div, 2007, 2(1): 10.
[27] Arsiwala T, Pahla J, Van Tits LJ, et al. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis-Central role of macrophage scavenger receptor 1[J]. J Mol Cell Cardiol, 2020, 139: 24-32.
[28] Wang T, Sun C, Hu L, et al. Sirt6 stabilizes atherosclerosis plaques by promoting macrophage autophagy and reducing contact with endothelial cells[J]. Biochem Cell Biol, 2020, 98(2): 120-129.
[29] Elhanati S, Kanfi Y, Varvak A, et al. Multiple regulatory layers of SREBP1/2 by SIRT6[J]. Cell Rep, 2013, 4(5): 905-912.
[30] Tao R, Xiong X, Depinho RA, et al. Hepatic SREBP-2 and cholesterol biosynthesis are regulated by FoxO3 and Sirt6[J]. J Lipid Res, 2013, 54(10): 2745-2753.
[31] He J, Zhang G, Pang Q, et al. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition[J]. FEBS J, 2017, 284(9): 1324-1337.
[32] Zi Y, Yi-An Y, Bing J, et al.Sirt6-induced autophagy restricted TREM-1-mediated pyroptosis in ox-LDL-treated endothelial cells:relevance to prognostication of patients with acute myocardial infarction[Z],2019:88.
[33] Gimbrone J, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis[J]. Circ Res, 2016, 118(4): 620-636.
[34] Xu S, Yin M, Koroleva M, et al. SIRT6 protects against endothelial dysfunction and atherosclerosis in mice[J]. Aging(Albany NY), 2016, 8(5): 1064-1082.
[35] D'onofrio N, Vitiello M, Casale R, et al. Sirtuins in vascular diseases: Emerging roles and therapeutic potential[J]. Biochim Biophys Acta, 2015, 1852(7): 1311-1322.
[36] Jedrusik-Bode M, Studencka M, Smolka C, et al. The sirtuin SIRT6 regulates stress granule formation in C[J]. elegans and mammals.J Cell Sci, 2013, 126(Pt 22): 5166-5177.
[37] Simeoni F, Tasselli L, Tanaka S, et al.Proteomic analysis of the SIRT6 interactome:novel links to genome maintenance and cellular stress signaling[Z],2013:3085.
[38] Pan PW, Feldman JL, Devries MK, et al. Structure and biochemical functions of SIRT6[J]. J Biol Chem, 2011, 286(16): 14575-14587.
[39] Yang B, Zwaans BM, Eckersdorff M, et al. The sirtuin SIRT6 deacetylates H3 K56Ac in vivo to promote genomic stability[J]. Cell Cycle, 2009, 8(16): 2662-2663.
[40] Michishita E, Mccord RA, Berber E, et al. SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin[J]. Nature, 2008, 452(7186): 492-496.
[41] Lappas M. Anti-inflammatory properties of sirtuin 6 in human umbilical vein endothelial cells[J]. Mediators Inflamm, 2012: 597514.
[42] Tilstra JS, Clauson CL, Niedernhofer LJ, et al. NF-κB in aging and disease[J]. Aging Dis, 2011, 2(6): 449-465.
[43] Cardus A, Uryga AK, Walters G, et al. SIRT6 protects human endothelial cells from DNA damage, telomere dysfunction, and senescence[J]. Cardiovasc Res, 2013, 97(3): 571-579.
[44] Yao QP, Zhang P, Qi YX, et al. The role of SIRT6 in the differentiation of vascular smooth muscle cells in response to cyclic strain[J]. Int J Biochem Cell Biol, 2014, 49: 98-104.
[45] Zq Z, Ren SC, Tan Y, et al.Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice[Z],2016:23912.
[46] Liu Z, Wang J, Huang X, et al. Deletion of sirtuin 6 accelerates endothelial dysfunction and atherosclerosis in apolipoprotein E-deficient mice[J]. Transl Res, 2016, 172: 18-29, e2.

备注/Memo

备注/Memo:
基金项目:河北省医学适用技术跟踪项目(GZ2020086)
更新日期/Last Update: 2022-09-10