[1]刘璐,南茜,谷文龙,等.脑卒中后认知功能障碍与病灶部位及其他认知功能相关脑病关联性研究进展[J].卒中与神经疾病杂志,2023,30(01):84-88.[doi:10.3969/j.issn.1007-0478.2023.01.017]
点击复制

脑卒中后认知功能障碍与病灶部位及其他认知功能相关脑病关联性研究进展()
分享到:

《卒中与神经疾病》杂志[ISSN:1007-0478/CN:42-1402/R]

卷:
第30卷
期数:
2023年01期
页码:
84-88
栏目:
综述
出版日期:
2023-03-20

文章信息/Info

文章编号:
1007-0478(2023)01-0084-05
作者:
刘璐南茜谷文龙王雅哲杜宇征
300193 天津中医药大学第一附属医院针灸科、国家中医针灸临床医学研究中心,天津中医药大学(刘璐 南茜 王雅哲); 天津中医药大学第一附属医院针灸科、国家中医针灸临床医学研究中心[杜宇征(通信作者)谷文龙]
分类号:
R743
DOI:
10.3969/j.issn.1007-0478.2023.01.017
文献标志码:
A

参考文献/References:

[1] 王拥军,李子孝,谷鸿秋,等.中国卒中报告2019(中文版)(3)[J].中国卒中杂志,2020,15(12):1251-1263.
[2] Yong-Jun W, Zi-Xiao L, Hong-Qiu G, et al. China stroke statistics 2019: a report from the national center for healthcare quality management in neurological diseases, China national clinical research center for neurological diseases, the Chinese stroke association, national center for chronic and non-communicable disease control and prevention, Chinese center for disease control and prevention and institute for global neuroscience and stroke collaborations[J]. Stroke and Vascular Neurology, 2020,5(3):211-239.
[3] Donnelly N, Sexton E, Merriman N, et al. The prevalence of cognitive impairment on admission to nursing home among residents with and without stroke: a Cross-Sectional survey of nursing homes in Ireland[J]. Int J Environ Res Public Health, 2020, 17(19): 7203.
[4] 汪凯,董强.卒中后认知障碍管理专家共识2021[J].中国卒中杂志,2021,16(4):376-389.
[5] Mok VC, Lam BY, Wong A, et al. Early-onset and delayed-onset poststroke dementia - revisiting the mechanisms[J]. Nat Rev Neurol, 2017, 13(3): 148-159.
[6] Zhao L, Biesbroek JM, Shi L, et al. Strategic infarct location for post-stroke cognitive impairment: A multivariate lesion-symptom mapping study[J]. J Cereb Blood Flow Metab, 2018, 38(8): 1299-1311.
[7] Puy L, Barbay M, Roussel M, et al. Neuroimaging determinants of poststroke cognitive performance[J]. Stroke, 2018, 49(11): 2666-2673.
[8] Harnod T, Lin CL, Hsu CY, et al. Post-stroke dementia is associated with increased subsequent all-cause mortality: A population-based cohort study[J]. Atherosclerosis, 2019, 284(1): 148-152.
[9] Baccaro A, Wang YP, Candido M, et al. Post-stroke depression and cognitive impairment: Study design and preliminary findings in a Brazilian prospective stroke cohort(EMMA study)[J]. J Affect Disord, 2019, 245: 72-81.
[10] Baccaro A, Wang YP, Brunoni AR, et al. Does stroke laterality predict major depression and cognitive impairment after stroke? Two-year prospective evaluation in the EMMA study[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 94: 109639.
[11] Toole JF, Bhadelia R, Williamson JD, et al. Progressive cognitive impairment after stroke[J]. J Stroke Cerebrovasc Dis, 2004, 13(3): 99-103.
[12] Munsch F, Sagnier S, Asselineau J, et al. Stroke location is an Independent predictor of cognitive outcome[J]. Stroke, 2016, 47(1): 66-73.
[13] Weaver NA, Kuijf HJ, Aben HP, et al. Strategic infarct locations for post-stroke cognitive impairment: a pooled analysis of individual patient data from 12 acute ischaemic stroke cohorts[J]. Lancet Neurol, 2021, 20(6): 448-459.
[14] Demarco AT, Turkeltaub PE. A multivariate lesion symptom mapping toolbox and examination of lesion-volume biases and correction methods in lesion-symptom mapping[J]. Hum Brain Mapp, 2018, 39(11): 4169-4182.
[15] Rehme AK, Grefkes C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans[J]. J Physiol, 2013, 591(1): 17-31.
[16] Dacosta-Aguayo R, Grana M, Savio A, et al. Prognostic value of changes in Resting-State functional connectivity patterns in cognitive recovery after stroke: a 3T fMRI pilot study[J]. Hum Brain Mapp, 2014, 35(8): 3819-3831.
[17] Carter AR, Shulman GL, Corbetta M. Why use a connectivity-based approach to study stroke and recovery of function?[J]. Neuroimage, 2012, 62(4): 2271-2280.
[18] Tuladhar AM, Snaphaan L, Shumskaya EA, et al. Default mode network connectivity in stroke patients[J]. PLoS One, 2013, 8(6): e66556.
[19] Ding X, Li CY, Wang QS, et al. Patterns in default-mode network connectivity for determining outcomes in cognitive function in acute stroke patients[J]. Neuroscience, 2014, 277(1): 637-646.
[20] Wang S, Rao B, Chen L, et al. Using fractional amplitude of Low-Frequency fluctuations and functional connectivity in patients with post-stroke cognitive impairment for a simulated stimulation program[J]. Front Aging Neurosci, 2021, 13: 724267.
[21] Miao G, Rao B, Wang S, et al. Decreased functional connectivities of Low-Degree level rich club organization and caudate in post-stroke cognitive impairment based on Resting-State fMRI and radiomics features[J]. Front Neurosci, 2021, 15: 796530.
[22] Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in, the default mode network: Evidence from a partial correlation network analysis[J]. Neuroimage, 2008, 42(3): 1178-1184.
[23] Zhang J, Li Z, Cao X, et al. Altered Prefrontal-Basal ganglia effective connectivity in patients with poststroke cognitive impairment[J]. Front Neurol, 2020, 11: 577482.
[24] Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging[J]. Neuron, 2013, 80(3): 807-815.
[25] Burton EJ, Kenny RA, O'brien J, et al. White matter hyperintensities are associated with impairment of memory, attention, and global cognitive performance in older stroke patients[J]. Stroke, 2004, 35(6): 1270-1275.
[26] Jokinen H, Kalska H, Mäntylä R, et al. White matter hyperintensities as a predictor of neuropsychological deficits post-stroke[J]. J Neurol Neurosurg Psychiatry, 2005, 76(9): 1229-1233.
[27] Zhao L, Wong A, Luo Y, et al. The additional contribution of white matter hyperintensity location to post-stroke cognitive impairment: insights from a Multiple-Lesion symptom mapping study[J]. Front Neurosci, 2018, 12: 290.
[28] Wardlaw JM. What causes lacunar stroke?[J]. J Neurol Neurosurg Psychiatry, 2005, 76(5): 617-619.
[29] Grau-Olivares M, Arboix A, Bartrés-Faz D, et al. Neuropsychological abnormalities associated with lacunar infarction[J]. J Neurol Sci, 2007, 257(1/2): 160-165.
[30] Edwards JD, Jacova C, Sepehry AA, et al. A quantitative systematic review of domain-specific cognitive impairment in lacunar stroke[J]. Neurology, 2013, 80(3): 315-322.
[31] Chen CF, Lan SH, Khor GT, et al. Cognitive dysfunction after acute lacunar infarct[J]. Kaohsiung J Med Sci, 2005, 21(6): 267-271.
[32] Grau-Olivares M, Arboix A. Mild cognitive impairment in stroke patients with ischemic cerebral small-vessel disease: a forerunner of vascular dementia?[J]. Expert Rev Neurother, 2009, 9(8): 1201-1217.
[33] Norrving B. Long-term prognosis after lacunar infarction[J]. Lancet Neurol, 2003, 2(4): 238-245.
[34] Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders[J]. J Neuropsychiatry Clin Neurosci, 1994, 6(4): 358-370.
[35] Cummings JL. Frontal-subcortical circuits and human behavior[J]. J Psychosom Res, 1998, 44(6): 627-628.
[36] Werring DJ, Frazer DW, Coward LJ, et al. Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI[J]. Brain, 2004, 127(Pt 10): 2265-2275.
[37] Gregoire SM, Smith K, Jäger HR, et al. Cerebral microbleeds and long-term cognitive outcome: longitudinal cohort study of stroke clinic patients[J]. Cerebrovasc Dis, 2012, 33(5): 430-435.
[38] Stebbins GT, Nyenhuis DL, Wang C, et al. Gray matter atrophy in patients with ischemic stroke with cognitive impairment[J]. Stroke, 2008, 39(3): 785-793.
[39] Akinyemi RO, Firbank M, Ogbole GI, et al. Medial temporal lobe atrophy, white matter hyperintensities and cognitive impairment among Nigerian African stroke survivors[J]. BMC Res Notes, 2015, 8: 625.
[40] Honig A, Leker RR. Cerebral micro-infarcts; the hidden missing Link to vascular cognitive decline[J]. J Neurol Sci, 2021, 420: 117171.
[41] Allan LM, Rowan EN, Firbank MJ, et al. Long term incidence of dementia, predictors of mortality and pathological diagnosis in older stroke survivors[J]. Brain, 2011, 134(Pt 12): 3716-3727.
[42] Paradise M, Crawford JD, Lam B, et al. Association of dilated perivascular spaces with cognitive decline and incident dementia[J]. Neurology, 2021, 96(11): e1501-e1511.
[43] Francesco A, Terence JQ, Graeme JH, et al. Enlarged perivascular spaces and cognitive impairment after stroke and transient ischemic attack[J]. International Journal of Stroke, 2018, 13(1): 47-56.
[44] Boyle PA, Yu L, Wilson RS, et al. Person-specific contribution of neuropathologies to cognitive loss in old age[J]. Ann Neurol, 2018, 83(1): 74-83.
[45] Wang F, Hua S, Zhang Y, et al. Association between small vessel disease markers, medial temporal lobe atrophy and cognitive impairment after stroke: a systematic review and Meta-Analysis[J]. J Stroke Cerebrovasc Dis, 2021, 30(1): 105460.
[46] Ouyang F, Jiang Z, Chen X, et al. Is cerebral amyloid-β deposition related to post-stroke cognitive impairment?[J]. Transl Stroke Res, 2021, 12(6): 946-957.
[47] Mao L, Chen XH, Zhuang JH, et al. Relationship between β-amyloid protein 1-42, thyroid hormone levels and the risk of cognitive impairment after ischemic stroke[J]. World J Clin Cases, 2020, 8(1): 76-87.
[48] Goulay R, Mena RL, Hol EM, et al. From stroke to dementia: a comprehensive review exposing tight interactions between stroke and amyloid-β formation[J]. Transl Stroke Res, 2020, 11(4): 601-614.
[49] Molad J, Hallevi H, Korczyn AD, et al. Vascular and neurodegenerative markers for the prediction of Post-Stroke cognitive impairment: results from the Tabasco study[J]. J Alzheimers Dis, 2019, 70(3): 889-898.
[50] 王俊.中国卒中后认知障碍防治研究专家共识[J].中国卒中杂志,2020,15(02):158-166.
[51] Van Rooij FG, Kessels RP, Richard E, et al. Cognitive impairment in transient ischemic attack patients: a systematic review[J]. Cerebrovasc Dis, 2016, 42(1/2): 1-9.

备注/Memo

备注/Memo:
基金项目:国家重点研发计划(NO.2019YFC0840700; NO.2019YFC0840709); 天津市科技计划项目(18PTLCSY00060)
更新日期/Last Update: 2023-03-20